63 research outputs found

    Chloroplast phosphoglycerate kinase, a gluconeogenetic enzyme, is required for efficient accumulation of Bamboo mosaic virus

    Get PDF
    The tertiary structure in the 3′-untranslated region (3′-UTR) of Bamboo mosaic virus (BaMV) RNA is known to be involved in minus-strand RNA synthesis. Proteins found in the RNA-dependent RNA polymerase (RdRp) fraction of BaMV-infected leaves interact with the radio labeled 3′-UTR probe in electrophoretic mobility shift assays (EMSA). Results derived from the ultraviolet (UV) cross-linking competition assays suggested that two cellular factors, p43 and p51, interact specifically with the 3′-UTR of BaMV RNA. p43 and p51 associate with the poly(A) tail and the pseudoknot of the BaMV 3′-UTR, respectively. p51-containing extracts specifically down-regulated minus-strand RNA synthesis when added to in vitro RdRp assays. LC/MS/MS sequencing indicates that p43 is a chloroplast phosphoglycerate kinase (PGK). When the chloroplast PKG levels were knocked down in plants, using virus-induced gene silencing system, the accumulation level of BaMV coat protein was also reduced

    Annexin A2 Binds RNA and Reduces the Frameshifting Efficiency of Infectious Bronchitis Virus

    Get PDF
    Annexin A2 (ANXA2) is a protein implicated in diverse cellular functions, including exocytosis, DNA synthesis and cell proliferation. It was recently proposed to be involved in RNA metabolism because it was shown to associate with some cellular mRNA. Here, we identified ANXA2 as a RNA binding protein (RBP) that binds IBV (Infectious Bronchitis Virus) pseudoknot RNA. We first confirmed the binding of ANXA2 to IBV pseudoknot RNA by ultraviolet crosslinking and showed its binding to RNA pseudoknot with ANXA2 protein in vitro and in the cells. Since the RNA pseudoknot located in the frameshifting region of IBV was used as bait for cellular RBPs, we tested whether ANXA2 could regulate the frameshfting of IBV pseudoknot RNA by dual luciferase assay. Overexpression of ANXA2 significantly reduced the frameshifting efficiency from IBV pseudoknot RNA and knockdown of the protein strikingly increased the frameshifting efficiency. The results suggest that ANXA2 is a cellular RBP that can modulate the frameshifting efficiency of viral RNA, enabling it to act as an anti-viral cellular protein, and hinting at roles in RNA metabolism for other cellular mRNAs

    Hsp90 Interacts Specifically with Viral RNA and Differentially Regulates Replication Initiation of Bamboo mosaic virus and Associated Satellite RNA

    Get PDF
    Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3′ untranslated region (3′ UTR) of BaMV genomic RNA, but not with the 3′ UTR of BaMV-associated satellite RNA (satBaMV RNA) or that of genomic RNA of other viruses, such as Potato virus X (PVX) or Cucumber mosaic virus (CMV). Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3′ UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3′ UTR of BaMV RNA during the initiation of BaMV RNA replication

    Regulation of translation initiation under biotic and abiotic stresses

    Get PDF
    [EN] Plants have developed versatile strategies to deal with the great variety of challenging conditions they are exposed to. Among them, the regulation of translation is a common target to finely modulate gene expression both under biotic and abiotic stress situations. Upon environmental challenges, translation is regulated to reduce the consumption of energy and to selectively synthesize proteins involved in the proper establishment of the tolerance response. In the case of viral infections, the situation is more complex, as viruses have evolved unconventional mechanisms to regulate translation in order to ensure the production of the viral encoded proteins using the plant machinery. Although the final purpose is different, in some cases, both plants and viruses share common mechanisms to modulate translation. In others, the mechanisms leading to the control of translation are viral- or stress-specific. In this paper, we review the different mechanisms involved in the regulation of translation initiation under virus infection and under environmental stress in plants. In addition, we describe the main features within the viral RNAs and the cellular mRNAs that promote their selective translation in plants undergoing biotic and abiotic stress situations.This work was supported by the ERC Starting Grant 260468 to M. Mar Castellano.Echevarria-Zomeno, S.; Yanguez, E.; Fernandez-Bautista, N.; Castro-Sanz, AB.; Ferrando Monleón, AR.; Castellano, MM. (2013). Regulation of translation initiation under biotic and abiotic stresses. International Journal of Molecular Sciences. 14(3):4670-4683. https://doi.org/10.3390/ijms14034670S46704683143Dever, T. E., & Green, R. (2012). The Elongation, Termination, and Recycling Phases of Translation in Eukaryotes. Cold Spring Harbor Perspectives in Biology, 4(7), a013706-a013706. doi:10.1101/cshperspect.a013706Sonenberg, N., & Hinnebusch, A. G. (2009). Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell, 136(4), 731-745. doi:10.1016/j.cell.2009.01.042Graber, T. E., & Holcik, M. (2007). Cap-independent regulation of gene expression in apoptosis. Molecular BioSystems, 3(12), 825. doi:10.1039/b708867aAl-Fageeh, M. B., & Smales, C. M. (2006). Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochemical Journal, 397(2), 247-259. doi:10.1042/bj20060166Braunstein, S., Karpisheva, K., Pola, C., Goldberg, J., Hochman, T., Yee, H., … Schneider, R. J. (2007). A Hypoxia-Controlled Cap-Dependent to Cap-Independent Translation Switch in Breast Cancer. Molecular Cell, 28(3), 501-512. doi:10.1016/j.molcel.2007.10.019Castelli, L. M., Lui, J., Campbell, S. G., Rowe, W., Zeef, L. A. H., Holmes, L. E. A., … Ashe, M. P. (2011). Glucose depletion inhibits translation initiation via eIF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated. Molecular Biology of the Cell, 22(18), 3379-3393. doi:10.1091/mbc.e11-02-0153Gilbert, W. V., Zhou, K., Butler, T. K., & Doudna, J. A. (2007). Cap-Independent Translation Is Required for Starvation-Induced Differentiation in Yeast. Science, 317(5842), 1224-1227. doi:10.1126/science.1144467Liu, L., & Simon, M. C. (2004). Regulation of Transcription and Translation by Hypoxia. Cancer Biology & Therapy, 3(6), 492-497. doi:10.4161/cbt.3.6.1010Sun, J., Conn, C. S., Han, Y., Yeung, V., & Qian, S.-B. (2010). PI3K-mTORC1 Attenuates Stress Response by Inhibiting Cap-independent Hsp70 Translation. Journal of Biological Chemistry, 286(8), 6791-6800. doi:10.1074/jbc.m110.172882Walsh, D., Mathews, M. B., & Mohr, I. (2012). Tinkering with Translation: Protein Synthesis in Virus-Infected Cells. Cold Spring Harbor Perspectives in Biology, 5(1), a012351-a012351. doi:10.1101/cshperspect.a012351Floris, M., Mahgoub, H., Lanet, E., Robaglia, C., & Menand, B. (2009). Post-transcriptional Regulation of Gene Expression in Plants during Abiotic Stress. International Journal of Molecular Sciences, 10(7), 3168-3185. doi:10.3390/ijms10073168Jackson, R. J., Hellen, C. U. T., & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews Molecular Cell Biology, 11(2), 113-127. doi:10.1038/nrm2838Clemens, M. J. (2001). Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins. Journal of Cellular and Molecular Medicine, 5(3), 221-239. doi:10.1111/j.1582-4934.2001.tb00157.xWek, R. C., Jiang, H.-Y., & Anthony, T. G. (2006). Coping with stress: eIF2 kinases and translational control. Biochemical Society Transactions, 34(1), 7-11. doi:10.1042/bst0340007Holcik, M., & Sonenberg, N. (2005). Translational control in stress and apoptosis. Nature Reviews Molecular Cell Biology, 6(4), 318-327. doi:10.1038/nrm1618Muñoz, A., & Castellano, M. M. (2012). Regulation of Translation Initiation under Abiotic Stress Conditions in Plants: Is It a Conserved or Not so Conserved Process among Eukaryotes? Comparative and Functional Genomics, 2012, 1-8. doi:10.1155/2012/406357Hinnebusch, A. G. (2005). TRANSLATIONAL REGULATION OFGCN4AND THE GENERAL AMINO ACID CONTROL OF YEAST. Annual Review of Microbiology, 59(1), 407-450. doi:10.1146/annurev.micro.59.031805.133833Harding, H. P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., & Ron, D. (2000). Regulated Translation Initiation Controls Stress-Induced Gene Expression in Mammalian Cells. Molecular Cell, 6(5), 1099-1108. doi:10.1016/s1097-2765(00)00108-8Ventoso, I., Kochetov, A., Montaner, D., Dopazo, J., & Santoyo, J. (2012). Extensive Translatome Remodeling during ER Stress Response in Mammalian Cells. PLoS ONE, 7(5), e35915. doi:10.1371/journal.pone.0035915Sudhakar, A., Ramachandran, A., Ghosh, S., Hasnain, S. E., Kaufman, R. J., & Ramaiah, K. V. A. (2000). Phosphorylation of Serine 51 in Initiation Factor 2α (eIF2α) Promotes Complex Formation between eIF2α(P) and eIF2B and Causes Inhibition in the Guanine Nucleotide Exchange Activity of eIF2B†. Biochemistry, 39(42), 12929-12938. doi:10.1021/bi0008682García, M. A., Meurs, E. F., & Esteban, M. (2007). The dsRNA protein kinase PKR: Virus and cell control. Biochimie, 89(6-7), 799-811. doi:10.1016/j.biochi.2007.03.001Katze, M. G., He, Y., & Gale, M. (2002). Viruses and interferon: a fight for supremacy. Nature Reviews Immunology, 2(9), 675-687. doi:10.1038/nri888Mohr, I. (2006). Phosphorylation and dephosphorylation events that regulate viral mRNA translation. Virus Research, 119(1), 89-99. doi:10.1016/j.virusres.2005.10.009Zhang, Y., Wang, Y., Kanyuka, K., Parry, M. A. J., Powers, S. J., & Halford, N. G. (2008). GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2α in Arabidopsis. Journal of Experimental Botany, 59(11), 3131-3141. doi:10.1093/jxb/ern169Lageix, S., Lanet, E., Pouch-Pélissier, M.-N., Espagnol, M.-C., Robaglia, C., Deragon, J.-M., & Pélissier, T. (2008). Arabidopsis eIF2α kinase GCN2 is essential for growth in stress conditions and is activated by wounding. BMC Plant Biology, 8(1), 134. doi:10.1186/1471-2229-8-134Bilgin, D. D., Liu, Y., Schiff, M., & Dinesh-Kumar, S. . (2003). P58IPK, a Plant Ortholog of Double-Stranded RNA-Dependent Protein Kinase PKR Inhibitor, Functions in Viral Pathogenesis. Developmental Cell, 4(5), 651-661. doi:10.1016/s1534-5807(03)00125-4Gallie, D. R., Le, H., Caldwell, C., Tanguay, R. L., Hoang, N. X., & Browning, K. S. (1997). The Phosphorylation State of Translation Initiation Factors Is Regulated Developmentally and following Heat Shock in Wheat. Journal of Biological Chemistry, 272(2), 1046-1053. doi:10.1074/jbc.272.2.1046Gingras, A. C., Svitkin, Y., Belsham, G. J., Pause, A., & Sonenberg, N. (1996). Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proceedings of the National Academy of Sciences, 93(11), 5578-5583. doi:10.1073/pnas.93.11.5578Gingras, A.-C., & Sonenberg, N. (1997). Adenovirus Infection Inactivates the Translational Inhibitors 4E-BP1 and 4E-BP2. Virology, 237(1), 182-186. doi:10.1006/viro.1997.8757Freire, M. A. (2005). Translation initiation factor (iso) 4E interacts with BTF3, the β subunit of the nascent polypeptide-associated complex. Gene, 345(2), 271-277. doi:10.1016/j.gene.2004.11.030Freire, M. A., Tourneur, C., Granier, F., Camonis, J., El Amrani, A., Browning, K. S., & Robaglia, C. (2000). Plant Molecular Biology, 44(2), 129-140. doi:10.1023/a:1006494628892Dreher, T. W., & Miller, W. A. (2006). Translational control in positive strand RNA plant viruses. Virology, 344(1), 185-197. doi:10.1016/j.virol.2005.09.031Thivierge, K., Nicaise, V., Dufresne, P. J., Cotton, S., Laliberté, J.-F., Le Gall, O., & Fortin, M. G. (2005). Plant Virus RNAs. Coordinated Recruitment of Conserved Host Functions by (+) ssRNA Viruses during Early Infection Events: Figure 1. Plant Physiology, 138(4), 1822-1827. doi:10.1104/pp.105.064105Deprost, D., Yao, L., Sormani, R., Moreau, M., Leterreux, G., Nicolaï, M., … Meyer, C. (2007). The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO reports, 8(9), 864-870. doi:10.1038/sj.embor.7401043Manjunath, S., Williams, A. J., & Bailey-Serres, J. (1999). Oxygen deprivation stimulates Ca2+-mediated phosphorylation of mRNA cap-binding protein eIF4E in maize roots. The Plant Journal, 19(1), 21-30. doi:10.1046/j.1365-313x.1999.00489.xRausell, A., Kanhonou, R., Yenush, L., Serrano, R., & Ros, R. (2003). The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. The Plant Journal, 34(3), 257-267. doi:10.1046/j.1365-313x.2003.01719.xSanan-Mishra, N., Pham, X. H., Sopory, S. K., & Tuteja, N. (2005). Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proceedings of the National Academy of Sciences, 102(2), 509-514. doi:10.1073/pnas.0406485102Kim, T.-H., Kim, B.-H., Yahalom, A., Chamovitz, D. A., & von Arnim, A. G. (2004). Translational Regulation via 5′ mRNA Leader Sequences Revealed by Mutational Analysis of the Arabidopsis Translation Initiation Factor Subunit eIF3h. The Plant Cell, 16(12), 3341-3356. doi:10.1105/tpc.104.026880Schepetilnikov, M., Kobayashi, K., Geldreich, A., Caranta, C., Robaglia, C., Keller, M., & Ryabova, L. A. (2011). Viral factor TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation. The EMBO Journal, 30(7), 1343-1356. doi:10.1038/emboj.2011.39Mayberry, L. K., Allen, M. L., Nitka, K. R., Campbell, L., Murphy, P. A., & Browning, K. S. (2011). Plant Cap-binding Complexes Eukaryotic Initiation Factors eIF4F and eIFISO4F. Journal of Biological Chemistry, 286(49), 42566-42574. doi:10.1074/jbc.m111.280099Carberry, S. E., Goss, D. J., & Darzynkiewicz, E. (1991). A comparison of the binding of methylated cap analogs to wheat germ protein synthesis initiation factors 4F and (iso) 4F. Biochemistry, 30(6), 1624-1627. doi:10.1021/bi00220a026Lellis, A. D., Allen, M. L., Aertker, A. W., Tran, J. K., Hillis, D. M., Harbin, C. R., … Browning, K. S. (2010). Deletion of the eIFiso4G subunit of the Arabidopsis eIFiso4F translation initiation complex impairs health and viability. Plant Molecular Biology, 74(3), 249-263. doi:10.1007/s11103-010-9670-zDinkova, T. D., Zepeda, H., Martínez-Salas, E., Martínez, L. M., Nieto-Sotelo, J., & Jiménez, E. S. (2005). Cap-independent translation of maize Hsp101. The Plant Journal, 41(5), 722-731. doi:10.1111/j.1365-313x.2005.02333.xHutvagner, G. (2002). A microRNA in a Multiple-Turnover RNAi Enzyme Complex. Science, 297(5589), 2056-2060. doi:10.1126/science.1073827Voinnet, O. (2009). Origin, Biogenesis, and Activity of Plant MicroRNAs. Cell, 136(4), 669-687. doi:10.1016/j.cell.2009.01.046Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., Sieburth, L., & Voinnet, O. (2008). Widespread Translational Inhibition by Plant miRNAs and siRNAs. Science, 320(5880), 1185-1190. doi:10.1126/science.1159151Sunkar, R., Li, Y.-F., & Jagadeeswaran, G. (2012). Functions of microRNAs in plant stress responses. Trends in Plant Science, 17(4), 196-203. doi:10.1016/j.tplants.2012.01.010Dong, Z., Shi, L., Wang, Y., Chen, L., Cai, Z., Wang, Y., … Li, X. (2013). Identification and Dynamic Regulation of microRNAs Involved in Salt Stress Responses in Functional Soybean Nodules by High-Throughput Sequencing. International Journal of Molecular Sciences, 14(2), 2717-2738. doi:10.3390/ijms14022717Srivastava, S., Srivastava, A. K., Suprasanna, P., & D’Souza, S. F. (2012). Identification and profiling of arsenic stress-induced microRNAs inBrassica juncea. Journal of Experimental Botany, 64(1), 303-315. doi:10.1093/jxb/ers333Dugas, D. V., & Bartel, B. (2008). Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Molecular Biology, 67(4), 403-417. doi:10.1007/s11103-008-9329-1Aukerman, M. J., & Sakai, H. (2003). Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes. The Plant Cell, 15(11), 2730-2741. doi:10.1105/tpc.016238Chen, X. (2004). A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development. Science, 303(5666), 2022-2025. doi:10.1126/science.1088060Park, W., Li, J., Song, R., Messing, J., & Chen, X. (2002). CARPEL FACTORY, a Dicer Homolog, and HEN1, a Novel Protein, Act in microRNA Metabolism in Arabidopsis thaliana. Current Biology, 12(17), 1484-1495. doi:10.1016/s0960-9822(02)01017-5Gu, S., & Kay, M. A. (2010). How do miRNAs mediate translational repression? Silence, 1(1), 11. doi:10.1186/1758-907x-1-11Lanet, E., Delannoy, E., Sormani, R., Floris, M., Brodersen, P., Crété, P., … Robaglia, C. (2009). Biochemical Evidence for Translational Repression by Arabidopsis MicroRNAs. The Plant Cell, 21(6), 1762-1768. doi:10.1105/tpc.108.063412Olsthoorn, R. C. L. (1999). A conformational switch at the 3’ end of a plant virus RNA regulates viral replication. The EMBO Journal, 18(17), 4856-4864. doi:10.1093/emboj/18.17.4856Smirnyagina, E. V., Morozov, S. Y., Rodionova, N. P., Miroshnichenko, N. A., Solovyev, A. G., Fedorkin, O. N., & Atabekov, J. G. (1991). Translational efficiency and competitive ability of mRNAs with 5′-untranslated αβ-leader of potato virus X RNA. Biochimie, 73(5), 587-598. doi:10.1016/0300-9084(91)90027-xThanaraj, T. A., & Pandit, M. W. (1990). Translation-Initiation Promoting Site on Transcripts of Highly Expressed Genes FromSaccharomyces cerevisiaeand the Role of Hairpin Stems to Position the Site Near the Initiation Codon. Journal of Biomolecular Structure and Dynamics, 7(6), 1279-1289. doi:10.1080/07391102.1990.10508565Tomashevskaya, O. L., Solovyev, A. G., Karpova, O. V., Fedorkin, O. N., Rodionova, N. P., Morozov, S. Y., & Atabekov, J. G. (1993). Effects of sequence elements in the potato virus X RNA 5’ non-translated  beta-leader on its translation enhancing activity. Journal of General Virology, 74(12), 2717-2724. doi:10.1099/0022-1317-74-12-2717Belkum, A. van, Abrahams, J. P., Pleij, C. W. A., & Bosch, L. (1985). Five pseudoknots are present at the 204 nucleotides long 3’ noncoding region of tobacco mosak virus RNA. Nucleic Acids Research, 13(21), 7673-7686. doi:10.1093/nar/13.21.7673Gallie, D. R. (2002). The 5’-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Research, 30(15), 3401-3411. doi:10.1093/nar/gkf457Wells, D. R., Tanguay, R. L., Le, H., & Gallie, D. R. (1998). HSP101 functions as a specific translational regulatory protein whose activity is regulated by nutrient status. Genes & Development, 12(20), 3236-3251. doi:10.1101/gad.12.20.3236Leonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M. G., & Laliberte, J.-F. (2000). Complex Formation between Potyvirus VPg and Translation Eukaryotic Initiation Factor 4E Correlates with Virus Infectivity. Journal of Virology, 74(17), 7730-7737. doi:10.1128/jvi.74.17.7730-7737.2000Wittmann, S., Chatel, H., Fortin, M. G., & Laliberté, J.-F. (1997). Interaction of the Viral Protein Genome Linked of Turnip Mosaic Potyvirus with the Translational Eukaryotic Initiation Factor (iso) 4E ofArabidopsis thalianaUsing the Yeast Two-Hybrid System. Virology, 234(1), 84-92. doi:10.1006/viro.1997.8634Robaglia, C., & Caranta, C. (2006). Translation initiation factors: a weak link in plant RNA virus infection. Trends in Plant Science, 11(1), 40-45. doi:10.1016/j.tplants.2005.11.004WANG, A., & KRISHNASWAMY, S. (2012). Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Molecular Plant Pathology, 13(7), 795-803. doi:10.1111/j.1364-3703.2012.00791.xLellis, A. D., Kasschau, K. D., Whitham, S. A., & Carrington, J. C. (2002). Loss-of-Susceptibility Mutants of Arabidopsis thaliana Reveal an Essential Role for eIF(iso)4E during Potyvirus Infection. Current Biology, 12(12), 1046-1051. doi:10.1016/s0960-9822(02)00898-9Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K. S., & Robaglia, C. (2002). The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. The Plant Journal, 32(6), 927-934. doi:10.1046/j.1365-313x.2002.01481.xSato, M., Nakahara, K., Yoshii, M., Ishikawa, M., & Uyeda, I. (2005). Selective involvement of members of the eukaryotic initiation factor 4E family in the infection ofArabidopsis thalianaby potyviruses. FEBS Letters, 579(5), 1167-1171. doi:10.1016/j.febslet.2004.12.086Ruffel, S., Dussault, M.-H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C., & Caranta, C. (2002). A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). The Plant Journal, 32(6), 1067-1075. doi:10.1046/j.1365-313x.2002.01499.xNicaise, V., German-Retana, S., Sanjuán, R., Dubrana, M.-P., Mazier, M., Maisonneuve, B., … LeGall, O. (2003). The Eukaryotic Translation Initiation Factor 4E Controls Lettuce Susceptibility to the Potyvirus Lettuce mosaic virus. Plant Physiology, 132(3), 1272-1282. doi:10.1104/pp.102.017855Ruffel, S., Gallois, J. L., Lesage, M. L., & Caranta, C. (2005). The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Molecular Genetics and Genomics, 274(4), 346-353. doi:10.1007/s00438-005-0003-xKhan, M. A., Miyoshi, H., Gallie, D. R., & Goss, D. J. (2007). Potyvirus Genome-linked Protein, VPg, Directly Affects Wheat Germin VitroTranslation. Journal of Biological Chemistry, 283(3), 1340-1349. doi:10.1074/jbc.m703356200Cotton, S., Dufresne, P. J., Thivierge, K., Ide, C., & Fortin, M. G. (2006). The VPgPro protein of Turnip mosaic virus: In vitro inhibition of translation from a ribonuclease activity. Virology, 351(1), 92-100. doi:10.1016/j.virol.2006.03.019Grzela, R., Strokovska, L., Andrieu, J.-P., Dublet, B., Zagorski, W., & Chroboczek, J. (2006). Potyvirus terminal protein VPg, effector of host eukaryotic initiation factor eIF4E. Biochimie, 88(7), 887-896. doi:10.1016/j.biochi.2006.02.012Kneller, E. L. P., Rakotondrafara, A. M., & Miller, W. A. (2006). Cap-independent translation of plant viral RNAs. Virus Research, 119(1), 63-75. doi:10.1016/j.virusres.2005.10.010Zeenko, V., & Gallie, D. R. (2005). Cap-independent Translation of Tobacco Etch Virus Is Conferred by an RNA Pseudoknot in the 5′-Leader. Journal of Biological Chemistry, 280(29), 26813-26824. doi:10.1074/jbc.m503576200Miller, W. A., & White, K. A. (2006). Long-Distance RNA-RNA Interactions in Plant Virus Gene Expression and Replication. Annual Review of Phytopathology, 44(1), 447-467. doi:10.1146/annurev.phyto.44.070505.143353Wang, S., Browning, K. S., & Miller, W. A. (1997). A viral sequence in the 3′-untranslated region mimics a 5′ cap in facilitating translation of uncapped mRNA. The EMBO Journal, 16(13), 4107-4116. doi:10.1093/emboj/16.13.4107Gao, F., Kasprzak, W., Stupina, V. A., Shapiro, B. A., & Simon, A. E. (2012). A Ribosome-Binding, 3′ Translational Enhancer Has a T-Shaped Structure and Engages in a Long-Distance RNA-RNA Interaction. Journal of Virology, 86(18), 9828-9842. doi:10.1128/jvi.00677-12Wang, Z., Treder, K., & Miller, W. A. (2009). Structure of a Viral Cap-independent Translation Element That Functions via High Affinity Binding to the eIF4E Subunit of eIF4F. Journal of Biological Chemistry, 284(21), 14189-14202. doi:10.1074/jbc.m808841200Gazo, B. M., Murphy, P., Gatchel, J. R., & Browning, K. S. (2004). A Novel Interaction of Cap-binding Protein Complexes Eukaryotic Initiation Factor (eIF) 4F and eIF(iso)4F with a Region in the 3′-Untranslated Region of Satellite Tobacco Necrosis Virus. Journal of Biological Chemistry, 279(14), 13584-13592. doi:10.1074/jbc.m311361200Mardanova, E. S., Zamchuk, L. A., Skulachev, M. V., & Ravin, N. V. (2008). The 5′ untranslated region of the maize alcohol dehydrogenase gene contains an internal ribosome entry site. Gene, 420(1), 11-16. doi:10.1016/j.gene.2008.04.00

    Eukaryotic Elongation Factor 1A Interacts with the Upstream Pseudoknot Domain in the 3′ Untranslated Region of Tobacco Mosaic Virus RNA

    No full text
    The genomic RNA of tobacco mosaic virus (TMV), like that of other positive-strand RNA viruses, acts as a template for both translation and replication. The highly structured 3′ untranslated region (UTR) of TMV RNAs plays an important role in both processes; it is not polyadenylated but ends with a tRNA-like structure (TLS) preceded by a conserved upstream pseudoknot domain (UPD). The TLS of tobamoviral RNAs can be specifically aminoacylated and, in this state, can interact with eukaryotic elongation factor 1A (eEF1A)/GTP with high affinity. Using a UV cross-linking assay, we detected another specific binding site for eEF1A/GTP, within the UPDs of TMV and crucifer-infecting tobamovirus (crTMV), that does not require aminoacylation. A mutational analysis revealed that UPD pseudoknot conformation and some conserved primary sequence elements are required for this interaction. Its possible role in the regulation of tobamovirus gene expression and replication is discussed

    An efficient in vitro translation system from mammalian cells lacking the translational inhibition caused by eIF2 phosphorylation

    No full text
    In vitro translation systems are used to investigate translational mechanisms and to synthesize proteins for characterization. Most available mammalian cell-free systems have reduced efficiency due to decreased translation initiation caused by phosphorylation of the initiation factor eIF2α on Ser51. We describe here a novel cell-free protein synthesis system using extracts from cultured mouse embryonic fibroblasts that are homozygous for the Ser51 to- Ala mutation in eIF2α (A/A cells). The translation efficiency of a capped and polyadenylated firefly luciferase mRNA in A/A cell extracts was 30-fold higher than in wild-type extracts. Protein synthesis in extracts from A/A cells was active for at least 2 h and generated up to 20 μg/mL of luciferase protein. Additionally, the A/A cell-free system faithfully recapitulated the selectivity of in vivo translation for mRNA features; translation was stimulated by a 5′-end cap (m7GpppN) and a 3′-end poly(A) tail in a synergistic manner. The system also showed similar efficiencies of cap-dependent and IRES-mediated translation (EMCV IRES). Significantly, the A/A cell-free system supported the post-translational modification of proteins, as shown by glycosylation of the HIV type-1 gp120 and cleavage of the signal peptide from β-lactamase. We propose that cell-free systems from A/A cells can be a useful tool for investigating mechanisms of mammalian mRNA translation and for the production of recombinant proteins for molecular studies. In addition, cell-free systems from differentiated cells with the Ser51Ala mutation should provide a means for investigating cell type-specific features of protein synthesis

    The hnRNA-Binding Proteins hnRNP L and PTB Are Required for Efficient Translation of the Cat-1 Arginine/Lysine Transporter mRNA during Amino Acid Starvation▿ †

    No full text
    The response to amino acid starvation involves the global decrease of protein synthesis and an increase in the translation of some mRNAs that contain an internal ribosome entry site (IRES). It was previously shown that translation of the mRNA for the arginine/lysine amino acid transporter Cat-1 increases during amino acid starvation via a mechanism that utilizes an IRES in the 5′ untranslated region of the Cat-1 mRNA. It is shown here that polypyrimidine tract binding protein (PTB) and an hnRNA binding protein, heterogeneous nuclear ribonucleoprotein L (hnRNP L), promote the efficient translation of Cat-1 mRNA during amino acid starvation. Association of both proteins with Cat-1 mRNA increased during starvation with kinetics that paralleled that of IRES activation, although the levels and subcellular distribution of the proteins were unchanged. The sequence CUUUCU within the Cat-1 IRES was important for PTB binding and for the induction of translation during amino acid starvation. Binding of hnRNP L to the IRES or the Cat-1 mRNA in vivo was independent of PTB binding but was not sufficient to increase IRES activity or Cat-1 mRNA translation during amino acid starvation. In contrast, binding of PTB to the Cat-1 mRNA in vivo required hnRNP L. A wider role of hnRNP L in mRNA translation was suggested by the decrease of global protein synthesis in cells with reduced hnRNP L levels. It is proposed that PTB and hnRNP L are positive regulators of Cat-1 mRNA translation via the IRES under stress conditions that cause a global decrease of protein synthesis
    corecore