3 research outputs found

    Measurement of the inclusive isolated-photon cross section in pp collisions at √s = 13 TeV using 36 fb−1 of ATLAS data

    Get PDF
    The differential cross section for isolated-photon production in pp collisions is measured at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC using an integrated luminosity of 36.1 fb. The differential cross section is presented as a function of the photon transverse energy in different regions of photon pseudorapidity. The differential cross section as a function of the absolute value of the photon pseudorapidity is also presented in different regions of photon transverse energy. Next-to-leading-order QCD calculations from Jetphox and Sherpa as well as next-to-next-to-leading-order QCD calculations from Nnlojet are compared with the measurement, using several parameterisations of the proton parton distribution functions. The predictions provide a good description of the data within the experimental and theoretical uncertainties. [Figure not available: see fulltext.

    Hadronic triggers and trigger object-level analysis at ATLAS

    No full text
    Hadronic signatures are critical to the high energy physics analysis program at the Large Hadron Collider (LHC), and are broadly used for both Standard Model measurements and searches for new physics. These signatures include generic quark and gluon jets, as well as jets originating from b-quarks or the decay of massive particles (such as electroweak bosons or top quarks). Additionally missing transverse momentum from non-interacting particles provides an interesting probe in the search for new physics beyond the Standard Model. Developing trigger selections that target these events is a huge challenge at the LHC due to the enormous event rates associated with these signatures. This challenge is exacerbated by the amount of pile-up activity, which continues to grow. In order to address these challenges, several new techniques have been developed during the past year in order to significantly improve the potential of the 2017 dataset and overcome the limiting factors, such as storage and computing requirements for the analysis of this data. This article presents an overview of how we trigger on hadronic signatures at the ATLAS experiment, outlining the challenges of hadronic object triggering and describing the improvements performed over the course of the Run II LHC data-taking program, such as analyses of a compact data stream involving trigger-level objects, recorded at a higher rate than is possible for full event data. The performance in Run II data will be shown, including demonstrations of the new techniques being used in 2017. We also discuss further critical developments envisaged for the rest of Run II

    Hadronic Triggers and trigger-object level analysis at ATLAS

    No full text
    Hadronic signatures are critical to the high energy physics analysis program, and are broadly used for both Standard Model measurements and searches for new physics. These signatures include generic quark and gluon jets, as well as jets originating from b-quarks or the decay of massive particles (such as electroweak bosons or top quarks). Additionally missing transverse momentum from non-interacting particles provides an interesting probe in the search for new physics beyond the Standard Model. Developing trigger selections that target these events is a huge challenge at the LHC due to the enormous rates associated with these signatures. This challenge is exacerbated by the amount of pile-up activity, which continues to grow. In order to address these challenges, several new techniques have been developed during the past year in order to significantly improve the potential of the 2017 dataset and overcome the limiting factors to more deeply probing for new physics, such as storage and computing requirements for the analysis of this data. This presentation presents an overview of how we trigger on hadronic signatures at the ATLAS experiment, outlining the challenges of hadronic object triggering and describing the improvements performed over the course of the Run 2 LHC data-taking program, such as analyses of a compact data stream involving trigger-level objects, recorded at a higher rate than is possible for full event data. The performance in Run 2 data will be shown, including demonstrations of the new techniques being used in 2017. We also discuss further critical developments envisaged for the rest of Run 2
    corecore