15 research outputs found

    Sorption of platinum on immobilized microorganisms for its on-line preconcentration and chemiluminescent determination in water samples

    Get PDF
    Fungi of the type Aspergillus sp. were immobilized on a cellulosic resin and used as a biosorbent for the on-line preconcentration and separation of Pt(IV) ions prior to their chemiluminescent determination via flow injection analysis. Biosorption and elution conditions were optimized, and the results compared to biosorbents based on the use of Chlorella vulgaris algae and Saccharomyces cerevisiae yeast in terms of preconcentration and selective retention of Pt(IV). The immobilized fungi presented here have a high potential for use in platinum biosorption. The procedure exhibits the currently lowest limit of detection (0.02 ng mL−1 of Pt) and very high selectivity. The procedure was applied to the determination of Pt(IV) in river water, road run-off, and wastewater samples

    Particle identification in ALICE : a Bayesian approach

    Get PDF
    Peer reviewe

    (Thia)calixarenephosphonic Acids as Potent Inhibitors of the Nucleic Acid Chaperone Activity of the HIV-1 Nucleocapsid Protein with a New Binding Mode and Multitarget Antiviral Activity

    No full text
    International audienceThe nucleocapsid protein (NC) is a highly conserved protein that plays key roles in HIV-1 replication through its nucleic acid chaperone properties mediated by its two zinc fingers and basic residues. NC is a promising target for antiviral therapy, particularly to control viral strains resistant to currently available drugs. Since calixarenes with antiviral properties have been described, we explored the ability of calixarene hydroxymethylphosphonic or sulfonic acids to inhibit NC chaperone properties and exhibit antiviral activity. By using fluorescence-based assays, we selected four calixarenes inhibiting NC chaperone activity with submicromolar IC50 values. These compounds were further shown by mass spectrometry, isothermal titration calorimetry, and fluorescence anisotropy to bind NC with no zinc ejection and to compete with nucleic acids for the binding to NC. Molecular dynamic simulations further indicated that these compounds interact via their phosphonate or sulfonate groups with the basic surface of NC but not with the hydrophobic plateau at the top of the folded fingers. Cellular studies showed that the most soluble compound CIP201 inhibited the infectivity of wild-type and drug-resistant HIV-1 strains at low micromolar concentrations, primarily targeting the early steps of HIV-1 replication. Moreover, CIP201 was also found to inhibit the flipping and polymerization activity of reverse transcriptase. Calixarenes thus form a class of noncovalent NC inhibitors, endowed with a new binding mode and multitarget antiviral activity

    PHOS Technical Design Report

    No full text

    Methods for determining synthetic surfactants

    No full text
    corecore