66 research outputs found

    Hypusination of Eif5a Regulates Cytoplasmic TDP-43 Aggregation and Accumulation in a Stress-Induced Cellular Model

    Get PDF
    TAR DNA-binding protein 43 (TDP-43) is a nuclear RNA/DNA binding protein involved in mRNA metabolism. Aberrant mislocalization to the cytoplasm and formation of phosphorylated/aggregated TDP-43 inclusions remains the hallmark pathology in a spectrum of neurodegenerative diseases, including frontotemporal disorders and Alzheimer\u27s disease. Eukaryotic Translation Initiation Factor 5A undergoes a unique post-translation modification of lysine to hypusine (K50), which determines eIF5A binding partners. We used a sodium arsenite-induced cellular stress model to investigate the role of hypusinated eIF5A (eIF5AHypK50) in governing TDP-43 cytoplasmic mislocalization and accumulation in stress granule. Our proteomics and functional data provide evidence that eIF5A interacts with TDP-43 in a hypusine-dependent manner. Additionally, we showed that following stress TDP-43 interactions with eIF5AHypK50 were induced both in the cytoplasm and stress granules. Pharmacological reduction of hypusination or mutations of lysine residues within the hypusine loop decreased phosphorylated and insoluble TDP-43 levels. The proteomic and biochemical analysis also identified nuclear pore complex importins KPNA1/2, KPNB1, and RanGTP as interacting partners of eIF5AHypK50. These findings are the first to provide a novel pathway and potential therapeutic targets that require further investigation in models of TDP-43 proteinopathies

    TDP-43 Mediated Blood-Brain Barrier Permeability and Leukocyte Infiltration Promote Neurodegeneration in a Low-Grade Systemic Inflammation Mouse Model

    Get PDF
    BACKGROUND: Neuronal cytoplasmic inclusions containing TAR DNA-binding protein 43 (TDP-43) are a neuropathological feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer\u27s Disease (AD). Emerging evidence also indicates that systemic inflammation may be a contributor to the pathology progression of these neurodegenerative diseases. METHODS: To investigate the role of systemic inflammation in the progression of neuronal TDP-43 pathology, AAV9 particles driven by the UCHL1 promoter were delivered to the frontal cortex of wild-type aged mice via intracranial injections to overexpress TDP-43 or green fluorescent protein (GFP) in corticospinal motor neurons. Animals were then subjected to a low-dose (500 Όg/kg) intraperitoneal E. coli lipopolysaccharide (LPS) administration challenge for 2 weeks to mimic a chronically altered low-grade systemic inflammatory state. Mice were then subjected to neurobehavioral studies, followed by biochemical and immunohistochemical analyses of the brain tissue. RESULTS: In the present study, we report that elevated neuronal TDP-43 levels induced microglial and astrocytic activation in the cortex of injected mice followed by increased RANTES signaling. Moreover, overexpression of TDP-43 exerted abundant mouse immunoglobulin G (IgG), CD3, and CD4+ T cell infiltration as well as endothelial and pericyte activation suggesting increased blood-brain barrier permeability. The BBB permeability in TDP-43 overexpressing brains yielded the frontal cortex vulnerable to the systemic inflammatory response following LPS treatment, leading to marked neutrophil infiltration, neuronal loss, reduced synaptosome-associated protein 25 (SNAP-25) levels, and behavioral impairments in the radial arm water maze (RAWM) task. CONCLUSIONS: These results reveal a novel role for TDP-43 in BBB permeability and leukocyte recruitment, indicating complex intermolecular interactions between an altered systemic inflammatory state and pathologically prone TDP-43 protein to promote disease progression

    CCL2 Overexpression in the Brain Promotes Glial Activation and Accelerates Tau Pathology in a Mouse Model of Tauopathy

    Get PDF
    Innate immune activation is a major contributor to Alzheimer’s Disease (AD) pathophysiology, although the mechanisms involved are poorly understood. Chemokine C-C motif ligand (CCL) 2 is produced by neurons and glial cells and is upregulated in the AD brain. Transgene expression of CCL2 in mouse models of amyloidosis produces microglia-induced amyloid ÎČ oligomerization, a strong indication of the role of these activation pathways in the amyloidogenic processes of AD. We have previously shown that CCL2 polarizes microglia in wild type mice. However, how CCL2 signaling contributes to tau pathogenesis remains unknown. To address this question, CCL2 was delivered via recombinant adeno-associated virus serotype 9 into both cortex and hippocampus of a mouse model with tau pathology (rTg4510). We report that CCL2 overexpression aggravated tau pathology in rTg4510 as shown by the increase in Gallyas stained neurofibrillary tangles as well as phosphorylated tau-positive inclusions. In addition, biochemical analysis showed a reduction in the levels of detergent-soluble tau species followed by increase in the insoluble fraction, indicating a shift toward larger tau aggregates. Indeed, increased levels of high molecular weight species of phosphorylated tau were found in the mice injected with CCL2. We also report that worsening of tau pathology following CCL2 overexpression was accompanied by a distinct inflammatory response. We report an increase in leukocyte common antigen (CD45) and Cluster of differentiation 68 (CD68) expression in the brain of rTg4510 mice without altering the expression levels of a cell-surface protein Transmembrane Protein 119 (Tmem119) and ionized calcium-binding adaptor molecule 1 (Iba-1) in resident microglia. Furthermore, the analysis of cytokines in brain extract showed a significant increase in interleukin (IL)-6 and CCL3, while CCL5 levels were decreased in CCL2 mice. No changes were observed in IL-1α, IL-1ÎČ, TNF-α. IL-4, Vascular endothelial growth factor-VEGF, IL-13 and CCL11. Taken together our data report for the first time that overexpression of CCL2 promotes the increase of pathogenic tau species and is associated with glial neuroinflammatory changes that are deleterious. We propose that these events may contribute to the pathogenesis of Alzheimer’s disease and other tauopathies

    Propuesta en supply chain management y logĂ­stica en la empresa papeles del cauca

    Get PDF
    Propuesta en supply chain management y logĂ­stica en la empresa papeles del caucaProposal in supply chain management and logistics in the company papeles del cauc

    Response to comment on 'Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity'

    Get PDF
    Lambert et al. question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reaffirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species

    Recent Asian origin of chytrid fungi causing global amphibian declines

    Get PDF
    Globalized infectious diseases are causing species declines worldwide, but their source often remains elusive. We used whole-genome sequencing to solve the spatiotemporal origins of the most devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis, a proximate driver of global amphibian declines. We traced the source of B. dendrobatidis to the Korean peninsula, where one lineage, BdASIA-1, exhibits the genetic hallmarks of an ancestral population that seeded the panzootic. We date the emergence of this pathogen to the early 20th century, coinciding with the global expansion of commercial trade in amphibians, and we show that intercontinental transmission is ongoing. Our findings point to East Asia as a geographic hotspot for B. dendrobatidis biodiversity and the original source of these lineages that now parasitize amphibians worldwide

    Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi

    Get PDF
    T.W.J.G., M.C.F., D.S.S., A.L., E.C., F.C.C., J.B., A.A.C., C.M., F.S., B.R.S., S.O., were supported through the Biodiversa project RACE: Risk Assessment of Chytridiomycosis to European Amphibian Biodiversity (NERC standard grant NE/K014455/1 and NE/E006701/1; ANR-08-BDVA-002-03). M.C.F., J.S., C.W., P.G. were supported by the Leverhulme Trust (RPG-2014-273), M.C.F., A.C., C.W. were supported by the Morris Animal Foundation. J.V. was supported by the Bolyai JĂĄnos Research Grant of the Hunagrian Academy of Sciences (BO/00597/14). F.G. and D.G. were supported by the Conservation Leadership Programme Future Conservationist Award. C.S.A. was supported by Fondecyt (No. 1181758). M.C.F. and A.C. were supported by. Mohamed bin Zayed Species Conservation Fund Project (152510704). GMR held a doctoral scholarship (SFRH/BD/69194/2010) from Fundação para a CiĂȘncia e a Tecnologia. L.F.T., C.L., L.P.R. K.R.Z., T.Y.J., T.S.J. were supported by SĂŁo Paulo Research Foundation (FAPESP #2016/25358-3), the National Counsel of Technological and Scientific Development (CNPq #300896/2016–6) and a Catalyzing New International Collaborations grant from the United States NSF (OISE-1159513). C.S.A. was supported by Fondecyt (No. 1181758). T.M.D. was supported by the Royal Geographical Society and the Royal Zoological Society of Scotland. B.W. was supported by the National Research Foundation of Korea (2015R1D1A1A01057282).Peer reviewedPublisher PD
    • 

    corecore