29 research outputs found

    Circumsubstellar disk SED in dependence on system parameters

    No full text
    Formulae for critical angles and areas that permit to imagine configurations of observed systems and to calculate their spectral energy distributions (SEDs) as dependencies on their geometrical parameters and inclination angles toward observer are obtained. Using these formulae an atlas of SEDs was created. The SEDs were calculated for 1120 systems with different central object masses, ages, inner disk radii, flaring geometries and inclination angles. The dependencies of SED shapes on systems ages, inclinations and substellar masses are analysed

    Three planets around HD 27894. A close-in pair with a 2:1 period ratio and an eccentric Jovian planet at 5.4 AU

    Get PDF
    Aims. Our new program with HARPS aims to detect mean motion resonant planetary systems around stars which were previously reported to have a single bona fide planet, often based only on sparse radial velocity data. Methods. Archival and new HARPS radial velocities for the K2V star HD 27894 were combined and fitted with a three-planet self-consistent dynamical model. The best-fit orbit was tested for long-term stability. Results. We find clear evidence that HD 27894 is hosting at least three massive planets. In addition to the already known Jovian planet with a period PbP_{\rm b} \approx 18 days we discover a Saturn-mass planet with PcP_{\rm c} \approx 36 days, likely in a 2:1 mean motion resonance with the first planet, and a cold massive planet (\approx 5.3 MJupM_{\mathrm{Jup}}) with a period PdP_{\rm d} \approx 5170 days on a moderately eccentric orbit (ede_{\rm d} = 0.39). Conclusions. HD 27894 is hosting a massive, eccentric giant planet orbiting around a tightly packed inner pair of massive planets likely involved in an asymmetric 2:1 mean motion resonance. HD 27894 may be an important milestone for probing planetary formation and evolution scenarios.Comment: 4 pages, 2 tables, 3 figures. Accepted for publication in A&A Letters to the Edito

    Radial Velocity Survey for Planets around Young stars (RVSPY) A transiting warm super-Jovian planet around HD 114082, a young star with a debris disk

    Full text link
    Aiming to detect planetary companions to young stars with debris disks via the radial velocity method, we observed HD114082 during April 2018 - August 2022 as one of the targets of our RVSPY program (Radial Velocity Survey for Planets around Young stars). We used the FEROS spectrograph, mounted to the MPG/ESO 2.2 m telescope in Chile, to obtain high signal-to-noise spectra and time series of precise radial velocities (RVs). Additionally, we analyzed archival HARPS spectra and TESS photometric data. We used the CERES, CERES++ and SERVAL pipelines to derive RVs and activity indicators and ExoStriker for the independent and combined analysis of the RVs and TESS photometry. We report the discovery of a warm super-Jovian companion around HD114082 based on a 109.8±\pm0.4 day signal in the combined RV data from FEROS and HARPS, and on one transit event in the TESS photometry. The best-fit model indicates a 8.0±\pm1.0 Mjup companion with a radius of 1.00±\pm0.03 Rjup in an orbit with a semi-major axis of 0.51±\pm0.01 au and an eccentricity of 0.4±\pm0.04. The companions orbit is in agreement with the known near edge-on debris disk located at about 28 au. HD114082b is possibly the youngest (15±\pm6 Myr), and one of only three younger than 100 Myr giant planetary companions for which both their mass and radius have been determined observationally. It is probably the first properly model-constraining giant planet that allows distinguishing between hot and cold-start models. It is significantly more compatible with the cold-start model.Comment: 10 pages, 9 figures, 5 tables; Accepted for publication in A&A Letter

    RVSPY -- Radial Velocity Survey for Planets around Young Stars. Target characterization and high-cadence survey

    Full text link
    We introduce our Radial Velocity Survey for Planets around Young stars (RVSPY), characterise our target stars, and search for substellar companions at orbital separations smaller than a few au from the host star. We use the FEROS spectrograph to obtain high signal-to-noise spectra and time series of precise radial velocities (RVs) of 111 stars most of which are surrounded by debris discs. Our target stars have spectral types between early F and late K, a median age of 400 Myr, and a median distance of 45 pc. We determine for all target stars their basic stellar parameters and present the results of the high-cadence RV survey and activity characterization. We achieve a median single-measurement RV precision of 6 m/s and derive the short-term intrinsic RV scatter of our targets (median 22 m/s), which is mostly caused by stellar activity and decays with age from >100 m/s at 500 Myr. We discover six previously unknown close companions with orbital periods between 10 and 100 days, three of which are low-mass stars, and three are in the brown dwarf mass regime. We detect no hot companion with an orbital period <10 days down to a median mass limit of ~1 M_Jup for stars younger than 500 Myr, which is still compatible with the established occurrence rate of such companions around main-sequence stars. We find significant RV periodicities between 1.3 and 4.5 days for 14 stars, which are, however, all caused by rotational modulation due to starspots. We also analyse the TESS photometric time series data and find significant periodicities for most of the stars. For 11 stars, the photometric periods are also clearly detected in the RV data. We also derive stellar rotation periods ranging from 1 to 10 days for 91 stars, mostly from TESS data. From the intrinsic activity-related short-term RV jitter, we derive the expected mass-detection thresholds for longer-period companions.Comment: 24 pages, 14 figures, 4 tables; Accepted for publication in A&

    Radio emission in a nearby, ultra-cool dwarf binary: A multifrequency study

    Get PDF
    Context. The substellar triple system VHS J125601.92−125723.9 (hereafter VHS 1256−1257) is composed of an equal-mass M7.5 brown dwarf binary and an L7 low-mass substellar object. In Guirado et al. (2018, A&A, 610, A23) we published the detection of radio emission at 8.4 GHz coming from the central binary and making it an excellent target for further observations. Aims. We aim to identify the origin of the radio emission occurring in the central binary of VHS 1256−1257 while discussing the expected mechanisms involved in the radio emission of ultra-cool dwarfs. Methods. We observed this system with the Karl G. Jansky Very Large Array, the European very-long-baseline interferometry (VLBI) Network, the enhanced Multi-Element Remotely Linked Interferometer Network, the NOrthern Extended Millimeter Array, and the Atacama Large Millimetre Array at frequencies ranging from 5 GHz up to 345 GHz in several epochs during 2017, 2018, and 2019. Results. We found radio emission at 6 GHz and 33 GHz coincident with the expected position of the central binary of VHS 1256−1257. The Stokes I density fluxes detected were 73 ± 4 μJy and 83 ± 13 μJy, respectively, with no detectable circular polarisation or pulses. No emission is detected at higher frequencies (230 GHz and 345 GHz), nor at 5 GHz with VLBI arrays. The emission appears to be stable over almost three years at 6 GHz. To explain the constraints obtained both from the detections and non-detections, we considered multiple scenarios including thermal and nonthermal emission, and different contributions from each component of the binary. Conclusions. Our results can be well explained by nonthermal gyrosynchrotron emission originating at radiation belts with a low plasma density (ne = 300−700 cm−3), a moderate magnetic field strength (B ≈ 140 G), and an energy distribution of electrons following a power-law (dN/dE ∝ E−δ) with δ fixed at 1.36. These radiation belts would need to be present in both components and also be viewed equatorially. © ESO 2022.We sincerely thank the anonymous referee for his/her very useful and constructive criticisms and suggestions. This paper is based on observations carried out with the IRAM NOEMA interferometer and the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). JBC and JCG were partially supported by the Spanish MINECO projects AYA2015-63939-C2-2-P, PGC2018-098915-B-C22 and by the Generalitat Valenciana project GVPROMETEO2020−080. MPT acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709) and through grants PGC2018-098915-B-C21 and PID2020-117404GB-C21 (MCI/AEI/FEDER, UE). RA was supported by the Generalitat Valenciana postdoctoral grant APOSTD/2018/177. BG acknowledges support from the UK Science and Technology Facilities Council (STFC) via the Consolidated Grant ST/R000905/1. MRZO and VJSB acknowledge the financial support from PID2019-109522GB-C51 and PID2019-109522GB-C53, respectively.Peer reviewe

    In-depth study of moderately young but extremely red, very dusty substellar companion HD206893B

    Get PDF
    Accepted for publication in Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.The substellar companion HD206893b has recently been discovered by direct imaging of its disc-bearing host star with the SPHERE instrument. We investigate the atypical properties of the companion, which has the reddest near-infrared colours among all known substellar objects, either orbiting a star or isolated, and we provide a comprehensive characterisation of the host star-disc-companion system. We conducted a follow-up of the companion with adaptive optics imaging and spectro-imaging with SPHERE, and a multiinstrument follow-up of its host star. We obtain a R=30 spectrum from 0.95 to 1.64 micron of the companion and additional photometry at 2.11 and 2.25 micron. We carried out extensive atmosphere model fitting for the companions and the host star in order to derive their age, mass, and metallicity. We found no additional companion in the system in spite of exquisite observing conditions resulting in sensitivity to 6MJup (2MJup) at 0.5" for an age of 300 Myr (50 Myr). We detect orbital motion over more than one year and characterise the possible Keplerian orbits. We constrain the age of the system to a minimum of 50 Myr and a maximum of 700 Myr, and determine that the host-star metallicity is nearly solar. The comparison of the companion spectrum and photometry to model atmospheres indicates that the companion is an extremely dusty late L dwarf, with an intermediate gravity (log g 4.5-5.0) which is compatible with the independent age estimate of the system. Though our best fit corresponds to a brown dwarf of 15-30 MJup aged 100-300 Myr, our analysis is also compatible with a range of masses and ages going from a 50 Myr 12MJup planetary-mass object to a 50 MJup Hyades-age brown dwarf...Peer reviewedFinal Accepted Versio

    Radial Velocity Survey for Planets around Young Stars (RVSPY). Target characterisation and high-cadence survey

    Get PDF
    We introduce our Radial Velocity Survey for Planets around Young stars (RVSPY), characterise our target stars, and search for substellar companions at orbital separations smaller than a few au from the host star. We use the FEROS spectrograph to obtain high signal-to-noise spectra and time series of precise radial velocities (RVs) of 111 stars most of which are surrounded by debris discs. Our target stars have spectral types between early F and late K, a median age of 400 Myr, and a median distance of 45 pc. We determine for all target stars their basic stellar parameters and present the results of the high-cadence RV survey and activity characterization. We achieve a median single-measurement RV precision of 6 m/s and derive the short-term intrinsic RV scatter of our targets (median 22 m/s), which is mostly caused by stellar activity and decays with age from >100 m/s at 500 Myr. We discover six previously unknown close companions with orbital periods between 10 and 100 days, three of which are low-mass stars, and three are in the brown dwarf mass regime. We detect no hot companion with an orbital period <10 days down to a median mass limit of ~1 M_Jup for stars younger than 500 Myr, which is still compatible with the established occurrence rate of such companions around main-sequence stars. We find significant RV periodicities between 1.3 and 4.5 days for 14 stars, which are, however, all caused by rotational modulation due to starspots. We also analyse the TESS photometric time series data and find significant periodicities for most of the stars. For 11 stars, the photometric periods are also clearly detected in the RV data. We also derive stellar rotation periods ranging from 1 to 10 days for 91 stars, mostly from TESS data. From the intrinsic activity-related short-term RV jitter, we derive the expected mass-detection thresholds for longer-period companions
    corecore