204 research outputs found

    Severe combined hyperlipidaemia and retinal lipid infiltration in a patient with Type 2 diabetes mellitus

    Get PDF
    Severe combined hyperlipidaemia has occasionally been associated with infiltration of tissues in addition to arteries and the skin. We report a woman with Type 2 diabetes mellitus (DM) and severe combined hyperlipidaemia who developed retinal lipid infiltration, resulting in blindness. A 61-year-old woman with a 15-year history of Type 2 DM was admitted following a two-week history of progressive visual loss. Examination identified lipid infiltration into the retina. Phenotypically she had severe combined hyperlipidaemia with elevated IDL cholesterol and a broad beta band on lipoprotein electrophoresis, raising the possibility of familial dysbetalipoproteinaemia. However, gene sequencing analysis indicated that the patient was homozygous for the E3/E3 allele of the ApoE gene with no mutations detected in either the coding region or intron-exon boundaries. Her lipid profile improved following dietary therapy and gemfibrozil treatment, but this had little effect on either her fundal appearances or her visual acuity. Type 2 DM plays a vital role both in allowing expression of severe combined hyperlipoproteinaemia, in addition to serving as a risk factor for complications such as tissue infiltration

    Virus-specific, CD8+ major histocompatibility complex class I-restricted cytotoxic T lymphocytes in lymphocytic choriomeningitis virus-infected beta2-microglobulin-deficient mice.

    Get PDF
    Following infection with lymphocytic choriomeningitis virus (LCMV), normal adult mice generate virus-specific, major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTL) which clear the virus after intraperitoneal infection or cause death following intracranial (i.c.) infection. We have investigated the response of beta2-microglobulin-deficient (beta2m-) mice of the H-2d haplotype (KOD mice) to LCMV infection. Unlike H-2b beta2m- mice, which generate CD4+ MHC class II-restricted CTL in response to LCMV, KOD mice generate high levels of CD8+ MHC class I-restricted, virus-specific CTL. These CTL are specific for the LCMV nucleoprotein epitope (residues 118 to 126) in association with the Ld class I molecule, analogous to the CTL response in wild-type mice. KOD mice are also susceptible to lethal LCM disease, with 75 to 80% of the mice dying 7 to 9 days following i.c. infection with virus. Similar to results with normal mice, lethal LCM disease in KOD mice is prevented by in vivo depletion of CD8+ T cells prior to i.c. infection. In contrast to wild-type mice, however, KOD mice cannot control LCMV and become persistently infected. Overall, these results demonstrate that beta2m is not an absolute requirement for presentation of endogenous antigen on Ld or for induction of virus-specific Ld-restricted CTL in vivo

    The topology, stability, and instability of learning-induced brain network repertoires in schizophrenia

    Get PDF
    AbstractThere is a paucity of graph theoretic methods applied to task-based data in schizophrenia (SCZ). Tasks are useful for modulating brain network dynamics, and topology. Understanding how changes in task conditions impact inter-group differences in topology can elucidate unstable network characteristics in SCZ. Here, in a group of patients and healthy controls (n = 59 total, 32 SCZ), we used an associative learning task with four distinct conditions (Memory Formation, Post-Encoding Consolidation, Memory Retrieval, and Post-Retrieval Consolidation) to induce network dynamics. From the acquired fMRI time series data, betweenness centrality (BC), a metric of a node’s integrative value was used to summarize network topology in each condition. Patients showed (a) differences in BC across multiple nodes and conditions; (b) decreased BC in more integrative nodes, but increased BC in less integrative nodes; (c) discordant node ranks in each of the conditions; and (d) complex patterns of stability and instability of node ranks across conditions. These analyses reveal that task conditions induce highly variegated patterns of network dys-organization in SCZ. We suggest that the dys-connection syndrome that is schizophrenia, is a contextually evoked process, and that the tools of network neuroscience should be oriented toward elucidating the limits of this dys-connection

    GPR54 (KISS1R) Transactivates EGFR to Promote Breast Cancer Cell Invasiveness

    Get PDF
    Kisspeptins (Kp), peptide products of the Kisspeptin-1 (KISS1) gene are endogenous ligands for a G protein-coupled receptor 54 (GPR54). Previous findings have shown that KISS1 acts as a metastasis suppressor in numerous cancers in humans. However, recent studies have demonstrated that an increase in KISS1 and GPR54 expression in human breast tumors correlates with higher tumor grade and metastatic potential. At present, whether or not Kp signaling promotes breast cancer cell invasiveness, required for metastasis and the underlying mechanisms, is unknown. We have found that kisspeptin-10 (Kp-10), the most potent Kp, stimulates the invasion of human breast cancer MDA-MB-231 and Hs578T cells using Matrigel-coated Transwell chamber assays and induces the formation of invasive stellate structures in three-dimensional invasion assays. Furthermore, Kp-10 stimulated an increase in matrix metalloprotease (MMP)-9 activity. We also found that Kp-10 induced the transactivation of epidermal growth factor receptor (EGFR). Knockdown of the GPCR scaffolding protein, β-arrestin 2, inhibited Kp-10-induced EGFR transactivation as well as Kp-10 induced invasion of breast cancer cells via modulation of MMP-9 secretion and activity. Finally, we found that the two receptors associate with each other under basal conditions, and FRET analysis revealed that GPR54 interacts directly with EGFR. The stability of the receptor complex formation was increased upon treatment of cells by Kp-10. Taken together, our findings suggest a novel mechanism by which Kp signaling via GPR54 stimulates breast cancer cell invasiveness

    Immunization with Single-Cycle SIV Significantly Reduces Viral Loads After an Intravenous Challenge with SIVmac239

    Get PDF
    Strains of simian immunodeficiency virus (SIV) that are limited to a single cycle of infection were evaluated for the ability to elicit protective immunity against wild-type SIVmac239 infection of rhesus macaques by two different vaccine regimens. Six animals were inoculated at 8-week intervals with 6 identical doses consisting of a mixture of three different envelope variants of single-cycle SIV (scSIV). Six additional animals were primed with a mixture of cytoplasmic domain-truncated envelope variants of scSIV and boosted with two doses of vesicular stomatitis virus glycoprotein (VSV G) trans-complemented scSIV. While both regimens elicited detectable virus-specific T cell responses, SIV-specific T cell frequencies were more than 10-fold higher after boosting with VSV G trans-complemented scSIV (VSV G scSIV). Broad T cell recognition of multiple viral antigens and Gag-specific CD4+ T cell responses were also observed after boosting with VSV G scSIV. With the exception of a single animal in the repeated immunization group, all of the animals became infected following an intravenous challenge with SIVmac239. However, significantly lower viral loads and higher memory CD4+ T cell counts were observed in both immunized groups relative to an unvaccinated control group. Indeed, both scSIV immunization regimens resulted in containment of SIVmac239 replication after challenge that was as good as, if not better than, what has been achieved by other non-persisting vaccine vectors that have been evaluated in this challenge model. Nevertheless, the extent of protection afforded by scSIV was not as good as typically conferred by persistent infection with live, attenuated SIV. These observations have potentially important implications to the design of an effective AIDS vaccine, since they suggest that ongoing stimulation of virus-specific immune responses may be essential to achieving the degree of protection afforded by live, attenuated SIV

    Cell-Based Models in Plant Developmental Biology: Insights into Hybrid Approaches

    Get PDF
    Computer models are nowadays part of the biologist's toolbox for studying biological dynamics and processes. Tissue development and functioning results from extremely complicated dynamics, that usual analysis does not come very far in terms of understanding the processes underlying those dynamics. In this context, mathematical and numerical models can help to disentangle complex interactions and to analyze non-intuitive dynamics that drives tissue development and functioning.Since these are multi-scale processes, both in time and space, there is the need to develop an appropriate modelling approach.The most promising one is hybrid modelling, that is a synthesis of the differential equation based reaction-diffusion approach at molecular and chemical continuous scales, and the Individual-Based modelling approach for simulating the mechanical and behavioural interactions of the cell ensemble constituting the tissue. Such an approach has been often used in developmental biology, both for plants and animals. In this paper, a brief history of hybrid modelling approaches and tools will be reviewed, and a simple example of its application to a current problem in plant developmental biology (the appearance of vascular patterning during plant growth) will be illustrated, showing the intuitiveness and the strength of such an approach

    Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use

    Get PDF
    Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders 1 . They are heritable 2,3 and etiologically related 4,5 behaviors that have been resistant to gene discovery efforts 6–11 . In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe
    corecore