108 research outputs found

    Effects of Periodic Sequential Arrangement of Subscale Miura-Foldcore Under Quasi-Static Compression

    Get PDF
    This study presents experimental and numerical investigations on the quasi-static compressive responses of various subscale Miura-foldcore composites. A series of quasi-static compression tests were conducted on standard Miura foldcore specimens fabricated using carbon/epoxy woven fabric prepregs. Representative volume element (RVE) models, incorporating periodic boundary conditions (PBCs), were developed to predict the size-dependent compressive response of subscale Miura foldcores. The effective properties of the carbon/epoxy woven fabric composite used in this study were calculated using the NASA multiscale analysis tool (NASMAT) via two-step homogenization process. The FE model exhibited comparable agreement with experimental results, showcasing variations of less than 7% and 12% in maximum compressive load and compressive stiffness, respectively. The implementation of PBC in the foldcore RVE models improved modeling accuracy by \u3c 4%, but drastically increased total computational time ( \u3e50%). The periodic pattern of foldcore unit-cells, where two single foldcore unit-cells were placed in parallel or perpendicular, imposed geometric constraints, resulting in small variations in predicted stress and strain distribution contours. The key findings highlighted in this study suggest that a 1×1 foldcore unit-cell model without PBC is sufficient to predict accurate quasi-static compressive responses of foldcore composites. This study advances the understanding of subscale Miura-foldcore composites and provides valuable insights into the limitations associated with the use of PBC in foldcore RVE models. The findings also offer a 2 practical guide for fabricating and analyzing traditional Miura folding patterns, promoting a more efficient and accurate approach for optimizing foldcore composite designs considering both structural performance and manufacturability

    Effect of event selection on jetlike correlation measurement in d+Au collisions at sNN=200 GeV

    Get PDF
    AbstractDihadron correlations are analyzed in sNN=200 GeV d+Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions

    Beam-energy Dependence Of Charge Balance Functions From Au + Au Collisions At Energies Available At The Bnl Relativistic Heavy Ion Collider

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Balance functions have been measured in terms of relative pseudorapidity (Δη) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at sNN=7.7GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at sNN=2.76TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at sNN=7.7 GeV implies that a QGP is still being created at this relatively low energy. © 2016 American Physical Society.942CNPq, Conselho Nacional de Desenvolvimento Científico e TecnológicoMinistry of Education and Science of the Russian FederationMOE, Ministry of Education of the People's Republic of ChinaMOST, Ministry of Science and Technology of the People's Republic of ChinaNRF-2012004024, National Research FoundationNSF, National Stroke FoundationConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    J/ψ polarization in p+p collisions at s=200 GeV in STAR

    Get PDF
    AbstractWe report on a polarization measurement of inclusive J/ψ mesons in the di-electron decay channel at mid-rapidity at 2<pT<6 GeV/c in p+p collisions at s=200 GeV. Data were taken with the STAR detector at RHIC. The J/ψ polarization measurement should help to distinguish between different models of the J/ψ production mechanism since they predict different pT dependences of the J/ψ polarization. In this analysis, J/ψ polarization is studied in the helicity frame. The polarization parameter λθ measured at RHIC becomes smaller towards high pT, indicating more longitudinal J/ψ polarization as pT increases. The result is compared with predictions of presently available models

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    J/ψ Production At Low Pt In Au+au And Cu+cu Collisions At Snn =200 Gev With The Star Detector

    Get PDF
    The J/ψ pT spectrum and nuclear modification factor (RAA) are reported for pT<5GeV/c and |y|<1 from 0% to 60% central Au+Au and Cu+Cu collisions at sNN=200GeV at STAR. A significant suppression of pT-integrated J/ψ production is observed in central Au+Au events. The Cu+Cu data are consistent with no suppression, although the precision is limited by the available statistics. RAA in Au+Au collisions exhibits a strong suppression at low transverse momentum and gradually increases with pT. The data are compared to high-pT STAR results and previously published BNL Relativistic Heavy Ion Collider results. Comparing with model calculations, it is found that the invariant yields at low pT are significantly above hydrodynamic flow predictions but are consistent with models that include color screening and regeneration. © 2014 American Physical Society.902CNRS/IN2P3; NSF; Arthritis National Research Foundation; NRF-2012004024; ANRF; Arthritis National Research FoundationMatsui, T., Satz, H., (1986) Phys Lett. B, 178, p. 416. , PYLBAJ 0370-2693 10.1016/0370-2693(86)91404-8Digal, S., Petreczky, P., Satz, H., (2001) Phys. Rev. D, 64, p. 094015. , 0556-2821 10.1103/PhysRevD.64.094015Karsch, F., Kharzeev, D., Satz, H., Sequential charmonium dissociation (2006) Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 637 (1-2), pp. 75-80. , DOI 10.1016/j.physletb.2006.03.078, PII S037026930600445XBraun-Munzinger, P., Stachel, J., The quest for the quark-gluon plasma (2007) Nature, 448 (7151), pp. 302-309. , DOI 10.1038/nature06080, PII NATURE06080Abreu, M.C., (1999) Phys. Lett. B, 449, p. 128. , (NA38 Collaboration),. PYLBAJ 0370-2693 10.1016/S0370-2693(99)00057-XAbreu, M.C., (1997) Phys. Lett. B, 410, p. 327. , (NA50 Collaboration),. PYLBAJ 0370-2693 10.1016/S0370-2693(97)00914-3Arnaldi, R., Banicz, K., Castor, J., Chaurand, B., Cicalo, C., Colla, A., Cortese, P., Wohri, H.K., J/ψ production in indium-indium collisions at 158GeV/nucleon (2007) Physical Review Letters, 99 (13), p. 132302. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.99.132302&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.99.132302Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N.N., Akiba, Y., Al-Bataineh, H., Alexander, J., Al-Jamel, A., J/ψ production versus centrality, transverse momentum, and rapidity in Au+Au collisions at s NN=200 GeV (2007) Physical Review Letters, 98 (23), p. 232301. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.232301&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.232301Adamczyk, L., (2013) Phys. Lett. B, 722, p. 55. , (STAR Collaboration),. PYLBAJ 0370-2693 10.1016/j.physletb.2013.04.010Abelev, B., (2012) Phys. Rev. Lett., 109, p. 072301. , (ALICE Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.109.072301Chatrchyan, S., (2012) J. High Energy Phys., (5), p. 063. , (CMS Collaboration),. JHEPFG 1029-8479 10.1007/JHEP05(2012)063Braun-Munzinger, P., Stachel, J., (2000) Phys. Lett. B, 490, p. 196. , PYLBAJ 0370-2693 10.1016/S0370-2693(00)00991-6Grandchamp, L., Rapp, R., (2002) Nucl. Phys. A, 709, p. 415. , NUPABL 0375-9474 10.1016/S0375-9474(02)01027-8Gavin, S., Vogt, R., (1996) Nucl. Phys. A, 610, p. 442. , NUPABL 0375-9474 10.1016/S0375-9474(96)00376-4Capella, A., (1997) Phys. Lett. B, 393, p. 431. , PYLBAJ 0370-2693 10.1016/S0370-2693(96)01650-4Karsch, F., Petronzio, P., (1988) Z. Phys. C, 37, p. 627. , ZPCFD2 0170-9739 10.1007/BF01549724Adare, A., (2012) Phys. Rev. D, 85, p. 092004. , (PHENIX Collaboration),. 10.1103/PhysRevD.85.092004Charm, beauty and charmonium production at HERA-B (2005) European Physical Journal C, 43 (1-4), pp. 179-186. , DOI 10.1140/epjc/s2005-02308-8Vogt, R., Shadowing and absorption effects on J/ψ production in da collisions (2005) Physical Review C - Nuclear Physics, 71 (5), pp. 1-11. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRC:71, DOI 10.1103/PhysRevC.71.054902, 054902Gavin, S., Gyulassy, M., (1988) Phys. Lett. B, 214, p. 241. , PYLBAJ 0370-2693 10.1016/0370-2693(88)91476-1Noble, J.V., (1981) Phys. Rev. Lett., 46, p. 412. , PRLTAO 0031-9007 10.1103/PhysRevLett.46.412Tram, V., Arleo, F., (2009) Eur. Phys. J. C, 61, p. 847. , EPCFFB 1434-6044 10.1140/epjc/s10052-009-0864-yAlde, D., Baer, H., Carey, T., Garvey, G., Klein, A., (1991) Phys. Rev. Lett., 66, p. 133. , PRLTAO 0031-9007 10.1103/PhysRevLett.66.133Leitch, M., (1992) Nucl. Phys. A, 544, p. 197. , (E772 and E789 Collaboration),. NUPABL 0375-9474 10.1016/0375-9474(92) 90574-4Leitch, M., (2000) Phys. Rev. Lett., 84, p. 3256. , (NuSea Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.84.3256Alessandro, B., Alexa, C., Arnaldi, R., Atayan, M., Baglin, C., Baldit, A., Beole, S., Willis, N., Charmonium production and nuclear absorption in p-A interactions at 450 GeV (2004) European Physical Journal C, 33 (1), pp. 31-40. , DOI 10.1140/epjc/s2003-01539-yAlessandro, B., Alexa, C., Arnaldi, R., Atayan, M., Beole, S., Boldea, V., Bordalo, P., Wu, T., A new measurement of J/ψ suppression in Pb-Pb collisions at 158 GeV per nucleon (2005) European Physical Journal C, 39 (3), pp. 335-345. , DOI 10.1140/epjc/s2004-02107-9Arnaldi, R., (2012) Phys. Lett. B, 706, p. 263. , (NA60 Collaboration),. PYLBAJ 0370-2693 10.1016/j.physletb.2011.11.042Adare, A., (2013) Phys. Rev. C, 87, p. 034904. , (PHENIX Collaboration),. 10.1103/PhysRevC.87.034904Adare, A., (2013) Phys. Rev. Lett., 111, p. 202301. , (PHENIX Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.111.202301Adare, A., (2011) Phys. Rev. Lett., 107, p. 142301. , (PHENIX Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.107.142301Zhao, X., Rapp, R., (2010) Phys. Rev. C, 82, p. 064905. , PRVCAN 0556-2813 10.1103/PhysRevC.82.064905Adamczyk, L., (2013) Phys. Rev. Lett., 111, p. 052301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.111.052301Ackermann, K.H., Adams, N., Adler, C., Ahammed, Z., Ahmad, S., Allgower, C., Amonett, J., Harris, J.W., STAR detector overview (2003) Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 499 (2-3), pp. 624-632. , DOI 10.1016/S0168-9002(02)01960-5Llope, W.J., (2004) Nucl. Instrum. Methods Phys. Res., Sect. A, 522, p. 252. , NIMAER 0168-9002 10.1016/j.nima.2003.11.414Adler, C., Denisov, A., Garcia, E., Murray, M., Strobele, H., White, S., The RHIC zero-degree calorimeters (2003) Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 499 (2-3), pp. 433-436. , DOI 10.1016/j.nima.2003.08.112Llope, W., (2012) Nucl. Instrum. Methods Phys. Res., Sect. A, 661, pp. S110. , (Suppl. 1),. NIMAER 0168-9002 10.1016/j.nima.2010.07.086Reed, R., (2010) J. Phys.: Conf. Ser., 219, p. 03020. , 1742-6596 10.1088/1742-6596/219/3/032020Beringer, J., (2012) Phys. Rev. D, 86, p. 010001. , (Particle Data Group),. 10.1103/PhysRevD.86.010001Beddo, M., Bielick, E., Fornek, T., Guarino, V., Hill, D., Krueger, K., LeCompte, T., Suaide, A.A.P., The STAR barrel electromagnetic calorimeter (2003) Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 499 (2-3), pp. 725-739. , DOI 10.1016/S0168-9002(02)01970-8Miller, M.L., Reygers, K., Sanders, S.J., Steinberg, P., (2007) Annu. Rev. Nucl. Part. Sci., 57, p. 205. , ARPSDF 0163-8998 10.1146/annurev.nucl.57.090506.123020Abelev, B.I., (2009) Phys. Lett. B, 673, p. 183. , (STAR Collaboration),. PYLBAJ 0370-2693 10.1016/j.physletb.2009.02.037Bichsel, H., A method to improve tracking and particle identification in TPCs and silicon detectors (2006) Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 562 (1), pp. 154-197. , DOI 10.1016/j.nima.2006.03.009, PII S0168900206005353Shao, M., (2006) Nucl. Instrum. Methods Phys. Res., Sect. A, 558, p. 419. , NIMAER 0168-9002 10.1016/j.nima.2005.11.251Abelev, B.I., (2009) Phys. Rev. C, 79, p. 034909. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.79.034909Adamczyk, L., (STAR Collaboration), arXiv:1402.1791Spiridonov, A., arXiv:hep-ex/0510076Abelev, B.I., (2009) Phys. Rev. C, 80, p. 041902. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.80.041902Tang, Z., Xu, Y., Ruan, L., Van Buren, G., Wang, F., Xu, Z., (2009) Phys. Rev. C, 79, p. 051901. , PRVCAN 0556-2813 10.1103/PhysRevC.79.051901Tang, Z., Yi, L., Ruan, L., Shao, M., Chen, H., (2013) Chin. Phys. Lett., 30, p. 031201. , CPLEEU 0256-307X 10.1088/0256-307X/30/3/031201Adare, A., (2010) Phys. Rev. D, 82, p. 012001. , (PHENIX Collaboration),. 10.1103/PhysRevD.82.012001Liu, Y., Qu, Z., Xu, N., Zhuang, P., (2009) Phys. Lett. B, 678, p. 72. , PYLBAJ 0370-2693 10.1016/j.physletb.2009.06.006Heinz, U.W., Shen, C., (private communication)Adare, A., (2008) Phys. Rev. Lett., 101, p. 122301. , (PHENIX Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.101.122301Adams, J., (2003) Phys. Rev. Lett, 91, p. 172302. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.91.172302Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N.N., Akiba, Y., Al-Bataineh, H., Alexander, J., Aoki, K., J/ψ Production versus transverse momentum and rapidity in p+p collisions at s=200GeV (2007) Physical Review Letters, 98 (23), p. 232002. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.232002&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.232002Zhao, X., Rapp, R., (2008) Phys. Lett. B, 664, p. 253. , PYLBAJ 0370-2693 10.1016/j.physletb.2008.03.06

    Dielectron Azimuthal Anisotropy At Mid-rapidity In Au+au Collisions At Snn =200 Gev

    Get PDF
    We report on the first measurement of the azimuthal anisotropy (v2) of dielectrons (e+e- pairs) at mid-rapidity from sNN=200 GeV Au+Au collisions with the STAR detector at the Relativistic Heavy Ion Collider (RHIC), presented as a function of transverse momentum (pT) for different invariant-mass regions. In the mass region Mee<1.1 GeV/c2 the dielectron v2 measurements are found to be consistent with expectations from π0,η,ω, and φ decay contributions. In the mass region 1.1<Mee<2.9GeV/c2, the measured dielectron v2 is consistent, within experimental uncertainties, with that from the cc¯ contributions.906Adams, J., (2005) Nucl. Phys. A, 757, p. 102. , NUPABL 0375-9474Arsene, I., (2005) Nucl. Phys. A, 757, p. 1. , NUPABL 0375-9474Adcox, K., (2005) Nucl. Phys. A, 757, p. 184. , NUPABL 0375-9474Back, B.B., (2005) Nucl. Phys. A, 757, p. 28. , NUPABL 0375-9474Rapp, R., Wambach, J., (2002) Adv. Nucl. Phys., 25, p. 1. , 0065-2970David, G., Rapp, R., Xu, Z., (2008) Phys. Rep., 462, p. 176. , PRPLCM 0370-1573Agakichiev, G., (2005) Eur. Phys. J. C, 41, p. 475. , EPCFFB 1434-6044Arnaldi, R., (2006) Phys. Rev. Lett., 96, p. 162302. , PRLTAO 0031-9007Brown, G.E., Rho, M., (1996) Phys. Rep., 269, p. 333. , PRPLCM 0370-1573Rapp, R., Wambach, J., (1999) Eur. Phys. J. A, 6, p. 415. , EPJAFV 1434-6001Dusling, K., Teaney, D., Zahed, I., (2007) Phys. Rev. C, 75, p. 024908. , PRVCAN 0556-2813Van Hees, H., Rapp, R., (2008) Nucl. Phys. A, 806, p. 339. , NUPABL 0375-9474Renk, T., Ruppert, J., (2008) Phys. Rev. C, 77, p. 024907. , PRVCAN 0556-2813Adare, A., (2010) Phys. Rev. C, 81, p. 034911. , PRVCAN 0556-2813Adamczyk, L., (2014) Phys. Rev. Lett., 113, p. 022301. , a longer version (unpublished). PRLTAO 0031-9007Rapp, R., Wambach, J., Van Hees, H., (2010) Relativistic Heavy-Ion Physics, , in, edited by R. Stock, Landolt Börnstein New Series I/23A (Springer, Berlin), Chap. 4-1Linnyk, O., Cassing, W., Manninen, J., Bratkovskaya, E.L., Ko, C.M., (2012) Phys. Rev. C, 85, p. 024910. , PRVCAN 0556-2813Xu, J.-H., Chen, H.F., Dong, X., Wang, Q., Zhang, Y.F., (2012) Phys. Rev. C, 85, p. 024906. , PRVCAN 0556-2813Adare, A., (2010) Phys. Rev. Lett., 104, p. 132301. , PRLTAO 0031-9007Poskanzer, A.M., Voloshin, S.A., (1998) Phys. Rev. C, 58, p. 1671. , PRVCAN 0556-2813Adare, A., (2012) Phys. Rev. Lett., 109, p. 122302. , PRLTAO 0031-9007Van Hees, H., Gale, C., Rapp, R., (2011) Phys. Rev. C, 84, p. 054906. , PRVCAN 0556-2813Chatterjee, R., Srivastava, D.K., Heinz, U., Gale, C., (2007) Phys. Rev. C, 75, p. 054909. , PRVCAN 0556-2813Adare, A., (2009) Phys. Lett. B, 670, p. 313. , PYLBAJ 0370-2693Bonner, B., (2003) Nucl. Instrum. Methods A, 508, p. 181. , NIMAER 0168-9002Shao, M., (2002) Nucl. Instrum. Methods A, 492, p. 344Wu, J., (2005) Nucl. Instrum. Methods A, 538, p. 243. , NIMAER 0168-9002Landgraf, J.M., (2003) Nucl. Instrum. Methods A, 499, p. 762. , NIMAER 0168-9002Ackermann, K.H., (2003) Nucl. Instrum. Methods A, 499, p. 624. , NIMAER 0168-9002Anderson, M., (2003) Nucl. Instrum. Methods A, 499, p. 659. , NIMAER 0168-9002Bichsel, H., (2006) Nucl. Instrum. Methods A, 562, p. 154. , NIMAER 0168-9002Xu, Y., (2010) Nucl. Instrum. Methods A, 614, p. 28. , NIMAER 0168-9002Shao, M., (2006) Nucl. Instrum. Methods A, 558, p. 419. , NIMAER 0168-9002Adams, J., (2005) Phys. Lett. B, 616, p. 8. , PYLBAJ 0370-2693Ruan, L., Ph.D. thesis, University of Science and Technology of China, 2005, arXiv:nucl-ex/0503018 (unpublished)Llope, W.J., (2004) Nucl. Instrum. Methods A, 522, p. 252. , NIMAER 0168-9002Adler, C., (2002) Phys. Rev. Lett., 89, p. 202301. , PRLTAO 0031-9007Adams, J., (2005) Phys. Rev. Lett., 94, p. 062301. , PRLTAO 0031-9007Adamczyk, L., (2012) Phys. Rev. C, 86, p. 024906. , PRVCAN 0556-2813Zhao, J., (2013), https://drupal.star.bnl.gov/STAR/theses/phd-32, Ph.D. thesis, Shanghai Institute of Applied Physics, (unpublished)Voloshin, S.A., Poskanzer, A.M., Snellings, R., (2010) Relativistic Heavy Ion Physics, pp. 5-54. , in, Landolt-Börnstein Vol. 1/23 (Springer-Verlag, Berlin), ppAdamczyk, L., (2013) Phys. Rev. C, 88, p. 014902. , PRVCAN 0556-2813Abelev, B.I., (2008) Phys. Rev. C, 77, p. 054901. , PRVCAN 0556-2813Abelev, B.I., (2006) Phys. Rev. Lett., 97, p. 152301. , PRLTAO 0031-9007Abelev, B.I., (2009) Phys. Rev. C, 79, p. 034909. , PRVCAN 0556-2813Abelev, B.I., (2009) Phys. Rev. C, 79, p. 064903. , PRVCAN 0556-2813Adams, J., (2005) Phys. Lett. B, 612, p. 181. , PYLBAJ 0370-2693Adler, S.S., (2007) Phys. Rev. C, 75, p. 024909. , PRVCAN 0556-2813Tang, Z., Xu, Y., Ruan, L., Van Buren, G., Wang, F., Xu, Z., (2009) Phys. Rev. C, 79, p. 051901. , (R) () PRVCAN 0556-2813Shao, M., Yi, L., Tang, Z., Chen, H., Li, C., Xu, Z., (2010) J. Phys. G, 37, p. 085104. , JPGPED 0954-3899Afanasiev, S., (2009) Phys. Rev. C, 80, p. 054907. , PRVCAN 0556-2813Adams, J., (2005) Phys. Rev. C, 72, p. 014904. , PRVCAN 0556-2813Abelev, B.I., (2007) Phys. Rev. Lett., 99, p. 112301. , PRLTAO 0031-9007Kroll, N.M., Wada, W., (1955) Phys. Rev., 98, p. 1355. , PHRVAO 0031-899XRuan, L., (2011) Nucl. Phys. A, 855, p. 269. , NUPABL 0375-9474Huang, B., (2011), Ph.D. thesis, University of Science and Technology of China, (unpublished)Sjöstrand, T., (2001) Comput. Phys. Commun., 135, p. 238. , CPHCBZ 0010-4655Adamczyk, L., (2012) Phys. Rev. D, 86, p. 072013. , PRVDAQ 1550-7998Agakishiev, H., (2011) Phys. Rev. D, 83, p. 052006. , PRVDAQ 1550-7998Adare, A., (2011) Phys. Rev. C, 84, p. 044905. , PRVCAN 0556-2813Adare, A., (2012) Phys. Rev. C, 85, p. 064914. , PRVCAN 0556-2813Adare, A., (2007) Phys. Rev. Lett., 98, p. 162301. , PRLTAO 0031-9007Adams, J., (2004) Phys. Rev. Lett., 92, p. 052302. , PRLTAO 0031-9007Vujanovic, G., Young, C., Schenke, B., Jeon, S., Rapp, R., Gale, C., (2013) Nucl. Phys. A, 904-905, p. 557c. , NUPABL 0375-9474Vujanovic, G., Young, C., Schenke, B., Jeon, S., Rapp, R., Gale, C., (2014) Phys. Rev. C, 89, p. 034904. , PRVCAN 0556-281

    Beam-energy Dependence Of Charge Separation Along The Magnetic Field In Au+au Collisions At Rhic

    Get PDF
    Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies. © 2014 American Physical Society.1135DOE; National Research Foundation; CNRS/IN2P3; NSF; National Research Foundation; NRF-2012004024; National Research FoundationVafa, C., Witten, E., (1984) Phys. Rev. Lett., 53, p. 535. , PRLTAO 0031-9007 10.1103/PhysRevLett.53.535Lee, D.T., (1973) Phys. Rev. D, 8, p. 1226. , PRVDAQ 0556-2821 10.1103/PhysRevD.8.1226Lee, T.D., Wick, G.C., (1974) Phys. Rev. D, 9, p. 2291. , PRVDAQ 0556-2821 10.1103/PhysRevD.9.2291Kharzeev, D.E., McLerran, L.D., Warringa, H.J., (2008) Nucl. Phys., A803, p. 227. , NUPBBO 0375-9474 10.1016/j.nuclphysa.2008.02.298Kharzeev, D., (2006) Phys. Lett. B, 633, p. 260. , PYLBAJ 0370-2693 10.1016/j.physletb.2005.11.075Kharzeev, D., Zhitnitsky, A., (2007) Nucl. Phys., A797, p. 67. , NUPBBO 0375-9474 10.1016/j.nuclphysa.2007.10.001Fukushima, K., Kharzeev, D.E., Warringa, H.J., (2008) Phys. Rev. D, 78, p. 074033. , PRVDAQ 1550-7998 10.1103/PhysRevD.78.074033Kharzeev, E.D., (2010) Ann. Phys. (Amsterdam), 325, p. 205. , APNYA6 0003-4916 10.1016/j.aop.2009.11.002Gatto, R., Ruggieri, M., (2012) Phys. Rev. D, 85, p. 054013. , PRVDAQ 1550-7998 10.1103/PhysRevD.85.054013Abelev, B.I., (2009) Phys. Rev. Lett., 103, p. 251601. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.103.251601Abelev, B.I., (2010) Phys. Rev. C, 81, p. 054908. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.81.054908Adamczyk, L., (2013) Phys. Rev. C, 88, p. 064911. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.88.064911Adamczyk, L., (2014) Phys. Rev. C, 89, p. 044908. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.89.044908Ajitanand, N.N., Esumi, S., Lacey, R.A., Proceedings of the RBRC Workshops, 2010, 96. , http://www.bnl.gov/isd/documents/74466.pdf, (PHENIX Collaboration), in, Vol.Ajitanand, N.N., Lacey, R.A., Taranenko, A., Alexander, J.M., (2011) Phys. Rev. C, 83, p. 011901. , PRVCAN 0556-2813 10.1103/PhysRevC.83.011901Abelev, B.I., (2013) Phys. Rev. Lett., 110, p. 012301. , (ALICE Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.110.012301Bzdak, A., Koch, V., Liao, J., (2010) Phys. Rev. C, 81, p. 031901. , PRVCAN 0556-2813 10.1103/PhysRevC.81.031901Liao, J., Koch, V., Bzdak, A., (2010) Phys. Rev. C, 82, p. 054902. , PRVCAN 0556-2813 10.1103/PhysRevC.82.054902Kharzeev, D.E., Son, D.T., (2011) Phys. Rev. Lett., 106, p. 062301. , PRLTAO 0031-9007 10.1103/PhysRevLett.106.062301Voloshin, A.S., (2004) Phys. Rev. C, 70, p. 057901. , PRVCAN 0556-2813 10.1103/PhysRevC.70.057901Anderson, M., (2003) Nucl. Instrum. Methods Phys. Res., Sect. A, 499, p. 659. , NIMAER 0168-9002 10.1016/S0168-9002(02)01964-2Adams, J., (2005) Phys. Rev. C, 72, p. 014904. , (STAR Collaboration), ()PRVCAN 0556-2813 10.1103/PhysRevC.72.014904Agakishiev, G., (2012) Phys. Rev. C, 86, p. 014904. , (STAR Collaboration), ()PRVCAN 0556-2813 10.1103/PhysRevC.86.014904Adamczyk, L., (2012) Phys. Rev. C, 86, p. 054908. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.86.054908Poskanzer, A.M., Voloshin, S.A., (1998) Phys. Rev. C, 58, p. 1671. , PRVCAN 0556-2813 10.1103/PhysRevC.58.1671Barrette, J., (1997) Phys. Rev. C, 56, p. 3254. , PRVCAN 0556-2813 10.1103/PhysRevC.56.3254Ollitrault, J.-Y., Poskanzer, A.M., Voloshin, S.A., (2009) Phys. Rev. C, 80, p. 014904. , PRVCAN 0556-2813 10.1103/PhysRevC.80.014904Abelev, B.I., (2008) Phys. Rev. Lett., 101, p. 252301. , (STAR Collaboration), () and references therein. PRLTAO 0031-9007 10.1103/PhysRevLett.101.252301Bzdak, A., Koch, V., Liao, J., (2011) Phys. Rev. C, 83, p. 014905. , PRVCAN 0556-2813 10.1103/PhysRevC.83.014905Ray, R.L., Longacre, R.S., arXiv:nucl-ex/0008009;Ray, R.L., Longacre, R.S., (private communication)Bass, S.A., (1998) Prog. Part. Nucl. Phys., 41, p. 255. , PPNPDB 0146-6410 10.1016/S0146-6410(98)00058-1Bleicher, M., (1999) J. Phys. G, 25, p. 1859. , JPGPED 0954-3899 10.1088/0954-3899/25/9/308Ma, G.-L., Zhang, B., (2011) Phys. Lett. B, 700, p. 39. , PYLBAJ 0370-2693 10.1016/j.physletb.2011.04.057Okorokov, A.V., (2013) Int. J. Mod. Phys. e, 22, p. 1350041. , IMPEER 0218-3013 10.1142/S0218301313500419Bzdak, A., Koch, V., Liao, J., (2013) Lect. Notes Phys., 871, p. 503. , LNPHA4 0075-8450 10.1007/978-3-642-37305-
    corecore