146 research outputs found

    Hierarchical accompanying and inhibiting patterns on the spatial arrangement of taxis' local hotspots

    Full text link
    Due to the large volume of recording, the complete spontaneity, and the flexible pick-up and drop-off locations, taxi data portrays a realistic and detailed picture of urban space use to a certain extent. The spatial arrangement of pick-up and drop-off hotspots reflects the organizational space, which has received attention in urban structure studies. Previous studies mainly explore the hotspots at a large scale by visual analysis or some simple indexes, where the hotspots usually cover the entire central business district, train stations, or dense residential areas, reaching a radius of hundreds or even thousands of meters. However, the spatial arrangement patterns of small-scale hotspots, reflecting the specific popular pick-up and drop-off locations, have not received much attention. Using two taxi trajectory datasets in Wuhan and Beijing, China, this study quantitatively explores the spatial arrangement of fine-grained pick-up and drop-off local hotspots with different levels of popularity, where the sizes are adaptively set as 90m*90m in Wuhan and 105m*105m in Beijing according to the local hotspot identification method. Results show that popular hotspots tend to be surrounded by less popular hotspots, but the existence of less popular hotspots is inhibited in regions with a large number of popular hotspots. We use the terms hierarchical accompany and inhibiting patterns for these two spatial configurations. Finally, to uncover the underlying mechanism, a KNN-based model is proposed to reproduce the spatial distribution of other less popular hotspots according to the most popular ones. These findings help decision-makers construct reasonable urban minimum units for precise traffic and disease control, as well as plan a more humane spatial arrangement of points of interest

    Multi-band remote sensing based retrieval model and 3D analysis of water depth in Hulun Lake, China

    Get PDF
    Hulun Lake, a large lake located on the cold and arid Hulunbeir grassland in the Inner Mongolia Autonomous Region, is the fifth largest in China and the largest in the north of the country. However, the information on the lake’s characteristics (e.g., water depth versus surface area) is scarce in literature. Based on the lake’s physiographic features, this study developed and used a model that merges the sunlight reflection band with the thermal infrared radiation band to simulate the lake’s characteristics. The model verification and error analysis indicated an optimal model structure of logarithm. Thus, this logarithmic model was selected to analyze the spectral data. The results indicated that the model did a good job in reproducing observed water depths and accurately predicted the depths on 24 September 2007. This showed that this model can be reliably applied to the cold and arid region. Subsequently, the results were used to generate a triangular irregular network (TIN) model, which in turn was used to compute the functional relations between water level, surface area, and volume. The correlation between water level and volume is superior to that between water level and area. The regression equation developed in this study can be used to estimate the volume when water elevation is knowninfo:eu-repo/semantics/publishedVersio

    Precise Measurements of Branching Fractions for Ds+D_s^+ Meson Decays to Two Pseudoscalar Mesons

    Get PDF
    We measure the branching fractions for seven Ds+D_{s}^{+} two-body decays to pseudo-scalar mesons, by analyzing data collected at s=4.1784.226\sqrt{s}=4.178\sim4.226 GeV with the BESIII detector at the BEPCII collider. The branching fractions are determined to be B(Ds+K+η)=(2.68±0.17±0.17±0.08)×103\mathcal{B}(D_s^+\to K^+\eta^{\prime})=(2.68\pm0.17\pm0.17\pm0.08)\times10^{-3}, B(Ds+ηπ+)=(37.8±0.4±2.1±1.2)×103\mathcal{B}(D_s^+\to\eta^{\prime}\pi^+)=(37.8\pm0.4\pm2.1\pm1.2)\times10^{-3}, B(Ds+K+η)=(1.62±0.10±0.03±0.05)×103\mathcal{B}(D_s^+\to K^+\eta)=(1.62\pm0.10\pm0.03\pm0.05)\times10^{-3}, B(Ds+ηπ+)=(17.41±0.18±0.27±0.54)×103\mathcal{B}(D_s^+\to\eta\pi^+)=(17.41\pm0.18\pm0.27\pm0.54)\times10^{-3}, B(Ds+K+KS0)=(15.02±0.10±0.27±0.47)×103\mathcal{B}(D_s^+\to K^+K_S^0)=(15.02\pm0.10\pm0.27\pm0.47)\times10^{-3}, B(Ds+KS0π+)=(1.109±0.034±0.023±0.035)×103\mathcal{B}(D_s^+\to K_S^0\pi^+)=(1.109\pm0.034\pm0.023\pm0.035)\times10^{-3}, B(Ds+K+π0)=(0.748±0.049±0.018±0.023)×103\mathcal{B}(D_s^+\to K^+\pi^0)=(0.748\pm0.049\pm0.018\pm0.023)\times10^{-3}, where the first uncertainties are statistical, the second are systematic, and the third are from external input branching fraction of the normalization mode Ds+K+Kπ+D_s^+\to K^+K^-\pi^+. Precision of our measurements is significantly improved compared with that of the current world average values

    Health-Promoting Properties of Common Herbs

    Get PDF
    Herbs have been used as food and for medicinal purposes for centuries. Research interest has focused on various herbs that possess hypolipidemic, antiplatelet, antitumor, or immune-stimulating properties that may be useful adjuncts in helping reduce the risk of cardiovascular disease and cancer. In different herbs, a wide variety of active phytochemicals, including the flavonoids, terpenoids, lignans, sulfides, polyphenolics, carotenoids, coumarins, saponins, plant sterols, curcumins, and phthalides have been identified. Several of these phytochemicals either inhibit nitrosation or the formation of DNA adducts or stimulate the activity of protective enzymes such as the Phase II enzyme glutathione transferase (EC 2.5.1.18). Research has centered around the biochemical activity of the Allium sp: and the Labiatae, Umbelliferae, and Zingiberaceae families, as well as flaxseed, licorice root, and green tea. Many of these herbs contain potent antioxidant compounds that provide significant protection against chronic diseases. These compounds may protect LDL cholesterol from oxidation, inhibit cyclooxygenase and lipoxygenase enzymes, inhibit lipid peroxidation, or have antiviral or antitumor activity. The volatile essential oils of commonly used culinary herbs, spices, and herbal teas inhibit mevalonate synthesis and thereby suppress cholesterol synthesis and tumor growth

    Basal Immunoglobulin Signaling Actively Maintains Developmental Stage in Immature B Cells

    Get PDF
    In developing B lymphocytes, a successful V(D)J heavy chain (HC) immunoglobulin (Ig) rearrangement establishes HC allelic exclusion and signals pro-B cells to advance in development to the pre-B stage. A subsequent functional light chain (LC) rearrangement then results in the surface expression of IgM at the immature B cell stage. Here we show that interruption of basal IgM signaling in immature B cells, either by the inducible deletion of surface Ig via Cre-mediated excision or by incubating cells with the tyrosine kinase inhibitor herbimycin A or the phosphatidylinositol 3-kinase inhibitor wortmannin, led to a striking “back-differentiation” of cells to an earlier stage in B cell development, characterized by the expression of pro-B cell genes. Cells undergoing this reversal in development also showed evidence of new LC gene rearrangements, suggesting an important role for basal Ig signaling in the maintenance of LC allelic exclusion. These studies identify a previously unappreciated level of plasticity in the B cell developmental program, and have important implications for our understanding of central tolerance mechanisms

    Collaborative Action of Brca1 and CtIP in Elimination of Covalent Modifications from Double-Strand Breaks to Facilitate Subsequent Break Repair

    Get PDF
    Topoisomerase inhibitors such as camptothecin and etoposide are used as anti-cancer drugs and induce double-strand breaks (DSBs) in genomic DNA in cycling cells. These DSBs are often covalently bound with polypeptides at the 3′ and 5′ ends. Such modifications must be eliminated before DSB repair can take place, but it remains elusive which nucleases are involved in this process. Previous studies show that CtIP plays a critical role in the generation of 3′ single-strand overhang at “clean” DSBs, thus initiating homologous recombination (HR)–dependent DSB repair. To analyze the function of CtIP in detail, we conditionally disrupted the CtIP gene in the chicken DT40 cell line. We found that CtIP is essential for cellular proliferation as well as for the formation of 3′ single-strand overhang, similar to what is observed in DT40 cells deficient in the Mre11/Rad50/Nbs1 complex. We also generated DT40 cell line harboring CtIP with an alanine substitution at residue Ser332, which is required for interaction with BRCA1. Although the resulting CtIPS332A/−/− cells exhibited accumulation of RPA and Rad51 upon DNA damage, and were proficient in HR, they showed a marked hypersensitivity to camptothecin and etoposide in comparison with CtIP+/−/− cells. Finally, CtIPS332A/−/−BRCA1−/− and CtIP+/−/−BRCA1−/− showed similar sensitivities to these reagents. Taken together, our data indicate that, in addition to its function in HR, CtIP plays a role in cellular tolerance to topoisomerase inhibitors. We propose that the BRCA1-CtIP complex plays a role in the nuclease-mediated elimination of oligonucleotides covalently bound to polypeptides from DSBs, thereby facilitating subsequent DSB repair
    corecore