Due to the large volume of recording, the complete spontaneity, and the
flexible pick-up and drop-off locations, taxi data portrays a realistic and
detailed picture of urban space use to a certain extent. The spatial
arrangement of pick-up and drop-off hotspots reflects the organizational space,
which has received attention in urban structure studies. Previous studies
mainly explore the hotspots at a large scale by visual analysis or some simple
indexes, where the hotspots usually cover the entire central business district,
train stations, or dense residential areas, reaching a radius of hundreds or
even thousands of meters. However, the spatial arrangement patterns of
small-scale hotspots, reflecting the specific popular pick-up and drop-off
locations, have not received much attention. Using two taxi trajectory datasets
in Wuhan and Beijing, China, this study quantitatively explores the spatial
arrangement of fine-grained pick-up and drop-off local hotspots with different
levels of popularity, where the sizes are adaptively set as 90m*90m in Wuhan
and 105m*105m in Beijing according to the local hotspot identification method.
Results show that popular hotspots tend to be surrounded by less popular
hotspots, but the existence of less popular hotspots is inhibited in regions
with a large number of popular hotspots. We use the terms hierarchical
accompany and inhibiting patterns for these two spatial configurations.
Finally, to uncover the underlying mechanism, a KNN-based model is proposed to
reproduce the spatial distribution of other less popular hotspots according to
the most popular ones. These findings help decision-makers construct reasonable
urban minimum units for precise traffic and disease control, as well as plan a
more humane spatial arrangement of points of interest