19 research outputs found

    The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends

    Full text link
    [EN] In this work, poly(lactic acid), PLA and thermoplastic starch, TPS blends (with a fixed content of 30 wt.% TPS) were prepared by melt extrusion process to increase the low ductile properties of PLA. The TPS used contains an aliphatic/aromatic biodegradable polyester (AAPE) that provides good resistance to aging and moisture. This blend provides slightly improved ductile properties with an increase in elongation at break of 21.5% but phase separation is observed due to the lack of strong interactions between the two polymers. Small amounts of maleinized linseed oil (MLO) can positively contribute to improve the ductile properties of these blends by a combined plasticizing-compatibilizing effect. The elongation at break increases over 160% with the only addition of 6 phr MLO. One of the evidence of the plasticizing-compatibilizing effect provided by MLO is the change in the glass transition temperature (Tg) with a decrease of about 10 °C. Field emission scanning electron microscopy (FESEM) of PLA-TPS blends with varying amounts of maleinized linseed oil also suggests an increase in compatibility.This research was supported by the Ministry of Economy and Competitiveness-MINECO, Ref: MAT2014-59242-C2-1-R. Authors also thank to "Conselleria d'Educacio, Cultura i Esport"-Generalitat Valenciana, Ref: GV/2014/008 for financial support.Ferri Azor, JM.; García García, D.; Sánchez Nacher, L.; Fenollar Gimeno, OÁ.; Balart Gimeno, RA. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers. 147:60-68. https://doi.org/10.1016/j.carbpol.2016.03.082S606814

    The effect of maleinized linseed oil as biobased plasticizer in poly (lactic acid)-based formulations

    Full text link
    [EN] The use of maleinized linseed oil (MLO) as a potential biobased plasticizer for poly(lactic acid) (PLA) industrial formulations with improved toughness was evaluated. MLO content varied in the range 0-20 phr (parts by weight of MLO per hundred parts by weight of PLA). Mechanical, thermal and morphological characterizations were used to assess the potential of MLO as an environmentally friendly plasticizer for PLA formulations. Dynamic mechanical thermal analysis and differential scanning calorimetry revealed anoticeable decrease in the glass transition temperature of about 6.5 degrees C compared to neat PLA. In addition, the cold crystallization process was favoured with MLO content due to the increased chain mobility that the plasticizer provides. PLA toughness was markedly improved in formulations with 5 phr MLO, while maximum elongation at break was obtained for PLA formulations plasticized with MLO content in the range 15-20 phr. Scanning electron microscopy revealed evidence of plastic deformation. Nevertheless, phase separation was detected in plasticized PLA formulations with high MLO content (above 15-20 phr MLO), which had a negative effect on overall toughness. (C) 2017 Society of Chemical IndustryThis research was funded by the Ministry of Economy and Competitiveness - MINECO, ref. MAT2014-59242-C2-1-R. The authors also thank Conselleria d'Educacio, Cultura i Esport - Generalitat Valenciana, ref. GV/2014/008, for financial support. DG-G thanks the Spanish Ministry of Education, Culture and Sports for financial support through an FPU grant (FPU13/06011).Ferri, J.; Garcia-Garcia, D.; Montanes, N.; Fenollar, O.; Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly (lactic acid)-based formulations. Polymer International. 66(6):882-891. https://doi.org/10.1002/pi.5329S88289166

    Oxidized potato starch based thermoplastic films:Effect of combination of hydrophilic and amphiphilic plasticizers

    Get PDF
    Different combinations of hydrophilic (glycerol and water) and amphiphilic (isoleucine) plasticizers were studied in the production of thermoplastic starch (TPS) powders and films from oxidized potato starch. All powder samples had an irregular and shrivelled morphology. In all mixtures containing isoleucine, this additive exuded from the starch matrix and re-crystallized during spray drying, resulting in hollow particles. The crystallinity and moisture sensitivity of freshly prepared films depended on the isoleucine content in the plasticizer formulation. Increasing the content led to a decrease in moisture absorption. Isoleucine formulated films showed the best tensile strength, whereas glycerol-rich ones showed better strain at break values. All glycerol plasticized formulations and the spray dried non-modified starch were amorphous. Glycerol reduced the glass transition temperature to 128 degrees C and glycerol formulated films showed the highest moisture uptake due to its hydrophilic nature. At a relative humidity (RH) of 50%, the rate of retrogradation was low, but at RH 100% all TPS films showed a high rate of retrogradation
    corecore