8 research outputs found

    Embedded Based Miniaturized Universal Electrochemical Sensing Platform

    Get PDF
    We created an embedded sensing platform based on STM32 embedded system, with integrated carbon-electrode ionic sensor by using a self-made plug. Given ration of concentration-unknown nitrate liquid samples, this platform is able to measure the nitrate concentration in neutral environment. Response signals which were transmitted by the sensor can be displayed via a serial port to the computer screen or via Bluetooth to the smartphone. Processed by a fitting function, signals are transformed into related concentration. Through repeating the experiment many times, the accuracy and repeatability turned out to be excellent. The results can be automatically stored on smartphone via Bluetooth. We created this embedded sensing platform for field water quality measurement. This platform also can be applied for other micro sensors’ signal acquisition and data processing

    DUSP4 inhibits autophagic cell death in PTC by inhibiting JNK-BCL2-Beclin1 signaling

    No full text
    DUSP4 is a prognostic marker and potential target of papillary thyroid carcinoma (PTC). However, the molecular mechanism underlying DUSP4-regulated PTC carcinogenesis is unclear. DUSP4 is a negative regulator of the autophagy promoter, JNK. This study aimed to explore the relationship between DUSP4 and JNK-mediated autophagic cell death in PTC. In this study, we explored the roles of DUSP4 in PTC using gain-of-function and loss-of-function assays. In addition, we further identified the significance of JNK-BCL2-Beclin1-autophagy signaling on DUSP4-regulated PTC carcinogenesis by combining DUSP4 silencing with JNK specific inhibitor (SP600125). We found that DUSP4 silencing promoted the phosphorylation of JNK and BCL2 in PTC cells and enhanced the release of Beclin1 from BCL2-Beclin1 complex. DUSP4 silencing promoted autophagy and death in PTC cells.The death and autophagy enhanced by DUSP4 silencing was reversed by JNK inhibitor. We further extended the in vitro experiments by injecting K1 cells transduced with DUSP4-silencing vector subcutaneously into nude mice. In vivo assays showed that DUSP4 silencing not only inhibited tumor growth, but also promoted JNK and BCL2 phosphorylation and LC3II expression.Overall, DUSP4 inhibits BCL2-Beclin1- autophagy signaling through negatively regulating JNK activity, thus inhibiting PTC oncogenesis.This study provides more potential clues for the prevention and cure of PTC.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Antihyperuricemic effect of mangiferin aglycon derivative J99745 by inhibiting xanthine oxidase activity and urate transporter 1 expression in mice

    No full text
    A mangiferin aglycon derivative J99745 has been identified as a potent xanthine oxidase (XOD) inhibitor by previous in vitro study. This study aimed to evaluate the hypouricemic effects of J99745 in experimental hyperuricemia mice, and explore the underlying mechanisms. Mice were orally administered 600 mg/kg xanthine once daily for 7 days and intraperitoneally injected 250 mg/kg oxonic acid on the 7th day to induce hyperuricemia. Meanwhile, J99745 (3, 10, and 30 mg/kg), allopurinol (20 mg/kg) or benzbromarone (20 mg/kg) were orally administered to mice for 7 days. On the 7th day, uric acid and creatinine in serum and urine, blood urea nitrogen (BUN), malondialdehyde (MDA) content and XOD activities in serum and liver were determined. Morphological changes in kidney were observed using hematoxylin and eosin (H&E) staining. Hepatic XOD, renal urate transporter 1 (URAT1), glucose transporter type 9 (GLUT9), organic anion transporter 1 (OAT1) and ATP-binding cassette transporter G2 (ABCG2) were detected by Western blot and real time polymerase chain reaction (PCR). The results showed that J99745 at doses of 10 and 30 mg/kg significantly reduced serum urate, and enhanced fractional excretion of uric acid (FEUA). H&E staining confirmed that J99745 provided greater nephroprotective effects than allopurinol and benzbromarone. Moreover, serum and hepatic XOD activities and renal URAT1 expression declined in J99745-treated hyperuricemia mice. In consistence with the ability to inhibit XOD, J99745 lowered serum MDA content in hyperuricemia mice. Our results suggest that J99745 exerts urate-lowering effect by inhibiting XOD activity and URAT1 expression, thus representing a promising candidate as an anti-hyperuricemia agent. KEY WORDS: Antihyperuricemic effect, Mangiferin aglycon, Derivative, Xanthine oxidase, Urate transporter

    Hairy Uniform Permanently Ligated Hollow Nanoparticles with Precise Dimension Control and Tunable Optical Properties

    No full text
    The ability to tailor the size and shape of nanoparticles (NPs) enables the investigation into the correlation between these parameters and optical, optoelectronic, electrical, magnetic, and catalytic properties. Despite several effective approaches available to synthesize NPs with a hollow interior, it remains challenging to have a general strategy for creating a wide diversity of high-quality hollow NPs with different dimensions and compositions on demand. Herein, we report on a general and robust strategy to in situ crafting of monodisperse hairy hollow noble metal NPs by capitalizing on rationally designed amphiphilic star-like triblock copolymers as nanoreactors. The intermediate blocks of star-like triblock copolymers can associate with metal precursors via strong interaction (i.e., direct coordination or electrostatic interaction), followed by reduction to yield hollow noble metal NPs. Notably, the outer blocks of star-like triblock copolymers function as ligands that intimately and permanently passivate the surface of hollow noble metal NPs (i.e., forming hairy permanently ligated hollow NPs with superior solubility in nonpolar solvents). More importantly, the diameter of the hollow interior and the thickness of the shell of NPs can be readily controlled. As such, the dimension-dependent optical properties of hollow NPs are scrutinized by combining experimental studies and theoretical modeling. The dye encapsulation/release studies indicated that hollow NPs may be utilized as attractive guest molecule nanocarriers. As the diversity of precursors are amenable to this star-like triblock copolymer nanoreactor strategy, it can conceptually be extended to produce a rich variety of hairy hollow NPs with different dimensions and functionalities for applications in catalysis, water purification, optical devices, lightweight fillers, and energy conversion and storage

    Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation

    No full text
    corecore