745 research outputs found
Transparent and UV-Reflective Photonic Films and Supraballs Composed of Hollow Silica Nanospheres
For an optically transparent, UV-reflective film, hollow silica nanospheres smaller than the visible wavelength (<lambda(vis)) are prepared and assembled into colloidal glasses, of which interstices are then backfilled with a polymer. The polymer refractive index is matched with the silica shell to minimize backscattering in the visible range, and the average distance between the hollow silica particles is adjusted by tuning the shell thickness to satisfy the interference resonance condition for a UV selective reflection. The resulting composite film shows a strong UV reflection as expected, but it is translucent in visible light due to non-negligible backscattering, which may be caused by large defects or fluctuation of the particle concentration. In order to avoid such backscattering, another polymer is introduced of which the refractive index is matched with the average refractive index of the hollow nanospheres. This allows an optically transparent film that selectively reflects the UV light. Furthermore, spherical aggregates of hollow silica nanospheres called "supraballs" are prepared and their average refractive index is matched with a solvent by adjusting the mixture ratio of water and ethylene glycol, which yields an optically transparent solution, selectively reflecting UV
Recommended from our members
Ultrasmooth, Highly Spherical Monocrystalline Gold Particles for Precision Plasmonics
Ultrasmooth, highly spherical monocrystalline gold particles were prepared by a cyclic process of slow growth followed by slow chemical etching, which selectively removes edges and vertices. The etching process effectively makes the surface tension isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even showing Fano-like resonances in small clusters. The high monodispersity of the particles we demonstrate should facilitate the self-assembly of nanoparticle clusters with uniform optical resonances, which could in turn be used to fabricate optical metafluids. Narrow size distributions are required to control not only the spectral features but also the morphology and yield of clusters in certain assembly schemes.Engineering and Applied Science
Reference values of bone stiffness index and C-terminal telopeptide in healthy European children
BACKGROUND/OBJECTIVE: Quantitative ultrasound measurements and bone metabolic markers can help to monitor bone health and to detect impaired skeletal development. Population-based reference values for children may serve as a basis for preventive measures to reduce the risk of osteoporosis and osteoporotic fractures in later life. This is the first paper providing age-, sex-and height-specific reference values for bone stiffness index (SI) and serum carboxy-terminal cross-linking telopeptide of type I collagen (CTX) in healthy, apparently prepubertal children.
SUBJECTS/METHODS: In the population-based IDEFICS baseline survey (2007-2008) and follow-up (2009-2010), 18 745 children from eight European countries were newly recruited. A total of 10 791 2-10.9-year-old and 1646 3-8.9-year-old healthy children provided data on SI of the right and left calcaneus and serum CTX, respectively. Furthermore, height and weight were measured. Percentile curves were calculated using the General Additive Model for Location Scale and Shape (GAMLSS) to model the distribution of SI and CTX depending on multiple covariates while accounting for dispersion, skewness, and the kurtosis of this distribution.
RESULTS: SI was negatively associated with age and height in children aged 2-5 years, whereas a positive association was observed in children aged 6-10 years. The dip in SI occurred at older age for higher SI percentiles and was observed earlier in taller children than in smaller children. The CTX reference curves showed a linear-positive association with age and height. No major sex differences were observed for the SI and CTX reference values.
CONCLUSION: These reference data lay the ground to evaluate bone growth and metabolism in prepubertal children in epidemiological and clinical settings. They may also inform clinical practice to monitor skeletal development and to assess adverse drug reactions during medical treatments
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV
The azimuthal anisotropy of charged particles in PbPb collisions at
nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS
detector at the LHC over an extended transverse momentum (pt) range up to
approximately 60 GeV. The data cover both the low-pt region associated with
hydrodynamic flow phenomena and the high-pt region where the anisotropies may
reflect the path-length dependence of parton energy loss in the created medium.
The anisotropy parameter (v2) of the particles is extracted by correlating
charged tracks with respect to the event-plane reconstructed by using the
energy deposited in forward-angle calorimeters. For the six bins of collision
centrality studied, spanning the range of 0-60% most-central events, the
observed v2 values are found to first increase with pt, reaching a maximum
around pt = 3 GeV, and then to gradually decrease to almost zero, with the
decline persisting up to at least pt = 40 GeV over the full centrality range
measured.Comment: Replaced with published version. Added journal reference and DO
- âŚ