55 research outputs found

    Tako-tsubo cardiomyopathy precipitated by alcohol withdrawal

    Get PDF
    A 57 year-old woman with no history of cardiac disease presented to the emergency department with confusion and seizures secondary to alcohol withdrawal. Elevated troponin levels and an electrocardiogram demonstrating global T-wave inversions prompted coronary angiography, which revealed coronary vessels free of significant disease. An echocardiogram showed both hypokinesis of the left-ventricular mid-segments with apical involvement and a hyperkinetic base consistent with tako-tsubo cardiomyopathy (TCM). Several clinical conditions have been reported as triggers of TCM. We report a case of TCM in a post-menopausal woman that was precipitated by alcohol withdrawal. (Cardiol J 2012; 19, 1: 81–85

    Impact of methanol intoxication on the human electrocardiogram

    Get PDF
    Background: Methanol is a common commercial compound that can lead to significant morbidity and mortality with high levels of exposure. The purpose of this study was to describe electrocardiographic (ECG) changes associated with methanol intoxication. Methods: A retrospective chart review was conducted with data from Kingston General Hospital collected between 2006 and 2011. Patient data, including demographics, medications, and laboratory data were recorded. Twelve-lead ECGs were obtained and changes were noted in relation to timing and extent of methanol intoxication. Results: Nine patients with a mean age of 45 years were analyzed. All patients ingested methanol orally and presented to hospital between < 1 to 25 h after ingestion. The mean plasma methanol concentration on admission was 49.8 mmol/L. A lower pH and higher plasma methanol concentration were associated with multiple ECG changes. On admission, ECG changes included sinus tachycardia (44%), PR prolongation (11%), QTc prolongation (22%) and non-specific T-wave changes (66%). One patient developed a type-1 Brugada ECG pattern. During their course in hospital, 7 patients required dialysis, 3 required mechanical ventilation, 3 developed visual impairment, and 1 died. All ECG changes normalized while in hospital. Conclusions: Methanol intoxication can lead to several ECG changes with sinus tachycardia and non-specific T-wave changes being the most common. These changes were more prominent in cases of severe acidosis

    Human severe sepsis cytokine mixture increases beta 2-integrin-dependent polymorphonuclear leukocyte adhesion to cerebral microvascular endothelial cells in vitro

    Get PDF
    Introduction: Sepsis-associated encephalopathy (SAE) is a state of acute brain dysfunction in response to a systemic infection. We propose that systemic inflammation during sepsis causes increased adhesion of leukocytes to the brain microvasculature, resulting in blood-brain barrier dysfunction. Thus, our objectives were to measure inflammatory analytes in plasma of severe sepsis patients to create an experimental cytokine mixture (CM), and to use this CM to investigate the activation and interactions of polymorphonuclear leukocytes (PMN) and human cerebrovascular endothelial cells (hCMEC/D3) in vitro. Methods: The concentrations of 41 inflammatory analytes were quantified in plasma obtained from 20 severe sepsis patients and 20 age- and sex-matched healthy controls employing an antibody microarray. Two CMs were prepared to mimic severe sepsis (SSCM) and control (CCM), and these CMs were then used for PMN and hCMEC/D3 stimulation in vitro. PMN adhesion to hCMEC/D3 was assessed under conditions of flow (shear stress 0.7 dyn/cm(2)). Results: Eight inflammatory analytes elevated in plasma obtained from severe sepsis patients were used to prepare SSCM and CCM. Stimulation of PMN with SSCM led to a marked increase in PMN adhesion to hCMEC/D3, as compared to CCM. PMN adhesion was abolished with neutralizing antibodies to either beta 2 (CD18), alpha(L)/beta(2) (CD11 alpha/CD18; LFA-1) or alpha(M)/beta(2) (CD11 beta/CD18; Mac-1) integrins. In addition, immune-neutralization of the endothelial (hCMEC/D3) cell adhesion molecule, ICAM-1 (CD54) also suppressed PMN adhesion. Conclusions: Human SSCM up-regulates PMN pro-adhesive phenotype and promotes PMN adhesion to cerebrovascular endothelial cells through a beta 2-integrin-ICAM-1-dependent mechanism. PMN adhesion to the brain microvasculature may contribute to SAE

    Human severe sepsis cytokine mixture increases ÎČ2-integrin-dependent polymorphonuclear leukocyte adhesion to cerebral microvascular endothelial cells in vitro.

    Get PDF
    INTRODUCTION: Sepsis-associated encephalopathy (SAE) is a state of acute brain dysfunction in response to a systemic infection. We propose that systemic inflammation during sepsis causes increased adhesion of leukocytes to the brain microvasculature, resulting in blood-brain barrier dysfunction. Thus, our objectives were to measure inflammatory analytes in plasma of severe sepsis patients to create an experimental cytokine mixture (CM), and to use this CM to investigate the activation and interactions of polymorphonuclear leukocytes (PMN) and human cerebrovascular endothelial cells (hCMEC/D3) in vitro. METHODS: The concentrations of 41 inflammatory analytes were quantified in plasma obtained from 20 severe sepsis patients and 20 age- and sex-matched healthy controls employing an antibody microarray. Two CMs were prepared to mimic severe sepsis (SSCM) and control (CCM), and these CMs were then used for PMN and hCMEC/D3 stimulation in vitro. PMN adhesion to hCMEC/D3 was assessed under conditions of flow (shear stress 0.7 dyn/cm(2)). RESULTS: Eight inflammatory analytes elevated in plasma obtained from severe sepsis patients were used to prepare SSCM and CCM. Stimulation of PMN with SSCM led to a marked increase in PMN adhesion to hCMEC/D3, as compared to CCM. PMN adhesion was abolished with neutralizing antibodies to either ÎČ2 (CD18), αL/ÎČ2 (CD11α/CD18; LFA-1) or αM/ÎČ2 (CD11ÎČ/CD18; Mac-1) integrins. In addition, immune-neutralization of the endothelial (hCMEC/D3) cell adhesion molecule, ICAM-1 (CD54) also suppressed PMN adhesion. CONCLUSIONS: Human SSCM up-regulates PMN pro-adhesive phenotype and promotes PMN adhesion to cerebrovascular endothelial cells through a ÎČ2-integrin-ICAM-1-dependent mechanism. PMN adhesion to the brain microvasculature may contribute to SAE

    Clinical effectiveness and cost-effectiveness results from the randomised controlled Trial of Oral Mandibular Advancement Devices for Obstructive sleep apnoea–hypopnoea (TOMADO) and long-term economic analysis of oral devices and continuous positive airway pressure

    Full text link
    • 

    corecore