209 research outputs found

    The impact of ageing reveals distinct roles for human dentate gyrus and CA3 in pattern separation and object recognition memory

    Get PDF
    © 2017 The Author(s). Both recognition of familiar objects and pattern separation, a process that orthogonalises overlapping events, are critical for effective memory. Evidence is emerging that human pattern separation requires dentate gyrus. Dentate gyrus is intimately connected to CA3 where, in animals, an autoassociative network enables recall of complete memories to underpin object/event recognition. Despite huge motivation to treat age-related human memory disorders, interaction between human CA3 and dentate subfields is difficult to investigate due to small size and proximity. We tested the hypothesis that human dentate gyrus is critical for pattern separation, whereas, CA3 underpins identical object recognition. Using 3 T MR hippocampal subfield volumetry combined with a behavioural pattern separation task, we demonstrate that dentate gyrus volume predicts accuracy and response time during behavioural pattern separation whereas CA3 predicts performance in object recognition memory. Critically, human dentate gyrus volume decreases with age whereas CA3 volume is age-independent. Further, decreased dentate gyrus volume, and no other subfield volume, mediates adverse effects of aging on memory. Thus, we demonstrate distinct roles for CA3 and dentate gyrus in human memory and uncover the variegated effects of human ageing across hippocampal regions. Accurate pinpointing of focal memory-related deficits will allow future targeted treatment for memory loss

    Cortical Thinning in Patients with Recent Onset Post-Traumatic Stress Disorder after a Single Prolonged Trauma Exposure

    Get PDF
    Most of magnetic resonance imaging (MRI) studies about post-traumatic stress disorder (PTSD) focused primarily on measuring of small brain structure volume or regional brain volume changes. There were rare reports investigating cortical thickness alterations in recent onset PTSD. Recent advances in computational analysis made it possible to measure cortical thickness in a fully automatic way, along with voxel-based morphometry (VBM) that enables an exploration of global structural changes throughout the brain by applying statistical parametric mapping (SPM) to high-resolution MRI. In this paper, Laplacian method was utilized to estimate cortical thickness after automatic segmentation of gray matter from MR images under SPM. Then thickness maps were analyzed by SPM8. Comparison between 10 survivors from a mining disaster with recent onset PTSD and 10 survivors without PTSD from the same trauma indicates cortical thinning in the left parietal lobe, right inferior frontal gyrus, and right parahippocampal gyrus. The regional cortical thickness of the right inferior frontal gyrus showed a significant negative correlation with the CAPS score in the patients with PTSD. Our study suggests that shape-related cortical thickness analysis may be more sensitive than volumetric analysis to subtle alteration at early stage of PTSD

    Assembly and dynamics of the bacteriophage T4 homologous recombination machinery

    Get PDF
    Homologous recombination (HR), a process involving the physical exchange of strands between homologous or nearly homologous DNA molecules, is critical for maintaining the genetic diversity and genome stability of species. Bacteriophage T4 is one of the classic systems for studies of homologous recombination. T4 uses HR for high-frequency genetic exchanges, for homology-directed DNA repair (HDR) processes including DNA double-strand break repair, and for the initiation of DNA replication (RDR). T4 recombination proteins are expressed at high levels during T4 infection in E. coli, and share strong sequence, structural, and/or functional conservation with their counterparts in cellular organisms. Biochemical studies of T4 recombination have provided key insights on DNA strand exchange mechanisms, on the structure and function of recombination proteins, and on the coordination of recombination and DNA synthesis activities during RDR and HDR. Recent years have seen the development of detailed biochemical models for the assembly and dynamics of presynaptic filaments in the T4 recombination system, for the atomic structure of T4 UvsX recombinase, and for the roles of DNA helicases in T4 recombination. The goal of this chapter is to review these recent advances and their implications for HR and HDR mechanisms in all organisms

    Long-Stay Psychiatric Patients: A Prospective Study Revealing Persistent Antipsychotic-Induced Movement Disorder

    Get PDF
    OBJECTIVE: The purpose of this study was to assess the frequency of persistent drug-induced movement disorders namely, tardive dyskinesia (TD), parkinsonism, akathisia and tardive dystonia in a representative sample of long-stay patients with chronic severe mental illness. METHOD: Naturalistic study of 209, mainly white, antipsychotic-treated patients, mostly diagnosed with psychotic disorder. Of this group, the same rater examined 194 patients at least two times over a 4-year period, with a mean follow-up time of 1.1 years, with validated scales for TD, parkinsonism, akathisia, and tardive dystonia. RESULTS: The frequencies of persistent movement disorders in the sample were 28.4% for TD, 56.2% for parkinsonism, 4.6% for akathisia and 5.7% for tardive dystonia. Two-thirds of the participants displayed at least one type of persistent movement disorder. CONCLUSIONS: Persistent movement disorder continues to be the norm for long-stay patients with chronic mental illness and long-term antipsychotic treatment. Measures are required to remedy this situation

    The new molecular markers DDIT3, STT3A, ARG2 and FAM129A are not useful in diagnosing thyroid follicular tumors

    Get PDF
    Preoperative characterization of thyroid follicular lesions is challenging. Fine-needle aspiration specimens cannot differentiate follicular carcinomas from benign follicular neoplasias. Recently, promising markers have been detected using modern molecular techniques. We conducted a retrospective study to confirm the usefulness of immunohistochemical staining for the protein markers, DDIT3, STT3A (ITM1), ARG2 and FAM129A (C1orf24) in separating benign and malignant thyroid follicular lesions. Formalin-fixed, paraffin-embedded thyroid tissue from 30 in-house cases (15 follicular carcinomas and 15 follicular adenomas), as well as 8 follicular carcinomas and 21 follicular adenomas on tissue microarray slides were stained immunohistochemically for DDIT3, STT3A, ARG2 and FAM129A expression. Control tissue consisted of thyroid parenchyma adjacent to the tumors and 11 separate cases of normal thyroid parenchyma. All in-house cases of follicular adenomas, follicular carcinomas and adjacent normal thyroid tissue showed positive immunostaining with anti-DDIT3 and anti-STT3A. Anti-ARG2 and anti-FAM129A polyclonal antibodies showed positive staining in 20 and 60% of in-house follicular adenomas, and 40 and 87% of in-house follicular carcinomas, respectively. Monoclonal anti-FAM129A demonstrated positive staining in 13 and 33% of in-house follicular adenomas and follicular carcinomas, respectively. Polyclonal anti-DDIT3, -STT3A and -FAM129A antibodies showed positive staining in all tissue microarray slides of follicular carcinoma and in 76, 85 and 81% of the follicular adenomas, respectively. Monoclonal anti-STT3A stained 81% of the follicular adenoma cores. Anti-ARG2 stained positive in 13% of follicular carcinomas and 10% of follicular adenomas on the tissue microarray slides. In conclusion, DDIT3, STT3A, ARG2 and FAM129A immunohistochemistry does not appear to be useful in the diagnosis of thyroid follicular neoplasias, as they do not reliably distinguish follicular thyroid carcinoma from follicular thyroid adenoma

    Resolving the neural circuits of anxiety

    Get PDF
    Although anxiety disorders represent a major societal problem demanding new therapeutic targets, these efforts have languished in the absence of a mechanistic understanding of this subjective emotional state. While it is impossible to know with certainty the subjective experience of a rodent, rodent models hold promise in dissecting well-conserved limbic circuits. The application of modern approaches in neuroscience has already begun to unmask the neural circuit intricacies underlying anxiety by allowing direct examination of hypotheses drawn from existing psychological concepts. This information points toward an updated conceptual model for what neural circuit perturbations could give rise to pathological anxiety and thereby provides a roadmap for future therapeutic development.National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (NIH Director’s New Innovator Award DP2-DK-102256-01)National Institute of Mental Health (U.S.) (NIH) R01-MH102441-01)JPB Foundatio

    Six Novel Susceptibility Loci for Early-Onset Androgenetic Alopecia and Their Unexpected Association with Common Diseases

    Get PDF
    Androgenetic alopecia (AGA) is a highly heritable condition and the most common form of hair loss in humans. Susceptibility loci have been described on the X chromosome and chromosome 20, but these loci explain a minority of its heritable variance. We conducted a large-scale meta-analysis of seven genome-wide association studies for early-onset AGA in 12,806 individuals of European ancestry. While replicating the two AGA loci on the X chromosome and chromosome 20, six novel susceptibility loci reached genome-wide significance (p = 2.62×10−9–1.01×10−12). Unexpectedly, we identified a risk allele at 17q21.31 that was recently associated with Parkinson's disease (PD) at a genome-wide significant level. We then tested the association between early-onset AGA and the risk of PD in a cross-sectional analysis of 568 PD cases and 7,664 controls. Early-onset AGA cases had significantly increased odds of subsequent PD (OR = 1.28, 95% confidence interval: 1.06–1.55, p = 8.9×10−3). Further, the AGA susceptibility alleles at the 17q21.31 locus are on the H1 haplotype, which is under negative selection in Europeans and has been linked to decreased fertility. Combining the risk alleles of six novel and two established susceptibility loci, we created a genotype risk score and tested its association with AGA in an additional sample. Individuals in the highest risk quartile of a genotype score had an approximately six-fold increased risk of early-onset AGA [odds ratio (OR) = 5.78, p = 1.4×10−88]. Our results highlight unexpected associations between early-onset AGA, Parkinson's disease, and decreased fertility, providing important insights into the pathophysiology of these conditions

    Short-term calorie restriction enhances adult hippocampal neurogenesis and remote fear memory in a Ghsr-dependent manner

    Get PDF
    The beneficial effects of calorie restriction (CR) have been described at both organismal and cellular levels in multiple organs. However, our understanding of the causal mediators of such hormesis is poorly understood, particularly in the context of higher brain function. Here, we show that the receptor for the orexigenic hormone acyl-ghrelin, the growth hormone secretagogue receptor (Ghsr), is enriched in the neurogenic niche of the hippocampal dentate gyrus (DG). Acute elevation of acyl-ghrelin levels by injection or by overnight CR, increased DG levels of the neurogenic transcription factor, Egr-1. Two weeks of CR increased the subsequent number of mature newborn neurons in the DG of adult wild-type but not Ghsr−/− mice. CR wild-type mice also showed improved remote contextual fear memory. Our findings suggest that Ghsr mediates the beneficial effects of CR on enhancing adult hippocampal neurogenesis and memory

    Preconception management of thyroid dysfunction

    Get PDF
    Uncorrected thyroid dysfunction in pregnancy has well‐recognized deleterious effects on foetal and maternal health. The early gestation period is one of the critical foetal vulnerability during which maternal thyroid dysfunction may have lasting repercussions. Accordingly, a pragmatic preconception strategy is key for ensuring optimal thyroid disease outcomes in pregnancy. Preconception planning in women with hypothyroidism should pre‐empt and mirror the adaptive changes in the thyroid gland by careful levothyroxine dose adjustments to ensure adequate foetal thyroid hormone delivery in pregnancy. In hyperthyroidism, the goal of preconception therapy is to control hyperthyroidism while curtailing the unwanted side effects of foetal and maternal exposure to antithyroid drugs. Thus, pregnancy should be deferred until a stable euthyroid state is achieved, and definitive therapy with radioiodine or surgery should be considered in women with Graves’ disease planning future pregnancy. Women with active disease who are imminently trying to conceive should be switched to propylthiouracil either preconception or at conception in order to minimize the risk of birth defects from carbimazole or methimazole exposure. Optimal strategies for women with borderline states of thyroid dysfunction namely subclinical hypothyroidism, isolated hypothyroxinaemia and thyroid autoimmunity remain uncertain due to the dearth of controlled interventional trials. Future trial designs should aspire to recruit and initiate therapy before conception or as early as possible in pregnanc
    corecore