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Short-term calorie restriction enhances adult hippocampal neurogenesis and 

remote fear memory in a Ghsr-dependent manner. 
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Highlights 

• The acyl-ghrelin receptor (Ghsr) is expressed in mature granule cell neurons 

of the dentate gyrus 

• Acyl-ghrelin & calorie restriction increase Egr-1 expression in the dentate 

gyrus 

• Calorie restriction increases neurogenesis and hippocampal dependent remote 

contextual fear memory via Ghsr 
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Abstract 

The beneficial effects of calorie restriction (CR) have been described at both 

organismal and cellular levels in multiple organs. However, our understanding of 

the causal mediators of such hormesis is poorly understood, particularly in the 

context of higher brain function. Here, we show that the receptor for the 

orexigenic hormone acyl-ghrelin, the growth hormone secretagogue receptor 

(Ghsr), is enriched in the neurogenic niche of the hippocampal dentate gyrus 

(DG). Acute elevation of acyl-ghrelin levels by injection or by overnight CR, 

increased DG levels of the neurogenic transcription factor, Egr-1. Two weeks of 

CR increased the subsequent number of mature newborn neurons in the DG of 

adult wild-type but not Ghsr-/- mice. CR wild-type mice also showed improved 

remote contextual fear memory. Our findings suggest that Ghsr mediates the 

beneficial effects of CR on enhancing adult hippocampal neurogenesis and 

memory. 

Keywords: Calorie restriction; Ghsr; Ghrelin; adult hippocampal neurogenesis 
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1. Introduction 

Calorie restriction (CR), in the absence of malnutrition, has beneficial effects on 

brain function, including reducing the incidence of age-related 

neurodegenerative disease (Gräff et al., 2013), eliciting anti-depressant behavior 

(Lutter et al., 2008) and improving memory function in rodents (Fontán-Lozano 

et al., 2007). In non-human primates, prolonged CR in adulthood decreases the 

incidence of age-related disease, including measures of brain atrophy (Colman et 

al., 2009). Whilst in adult humans a 3-month period of CR has been shown to 

improve memory function (Witte et al., 2009). The physiological mechanism(s) 

underlying these effects are not fully understood. One process implicated in 

regulating anxiolytic and mnemonic behavior is adult hippocampal neurogenesis 

(AHN). This is a form of ongoing plasticity that occurs throughout life involving 

the birth, differentiation and maturation of new neurons in the adult mammalian 

dentate gyrus (DG). Decreased neurogenesis has been implicated in the 

pathogenesis of anxiety and depression (Snyder et al., 2011) as well as cognitive 

impairment (Yassa et al., 2011) and dementia (Höglinger et al., 2004; Komuro et 

al., 2015). Recently it has been shown that AHN is essential for distinguishing 

similar but distinct contexts by laying down non-overlapping memory traces 

(Clelland et al., 2009; Creer et al., 2010; Nakashiba et al., 2012; Sahay et al., 

2011); this form of cognition, termed pattern separation, is impaired in anxiety-

disorders (Kheirbek et al., 2012) and cognitive decline (Yassa et al., 2011). 

Notably, factors such as exercise (van Praag et al., 2005, 1999) and 

environmental enrichment positively modulate the rate of AHN and performance 

in pattern separation dependent cognitive tasks (Clelland et al., 2009) and 

anxiety related tests (Llorens-martín et al., 2010). In addition, reducing the 
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number of calories consumed promotes the survival of newborn cells in the 

hippocampus (Lee et al., 2002). However, the underlying mediator(s) are not 

known and it is unclear whether these newborn cells mature into differentiated 

neurons or if they integrate into hippocampal circuitry to modulate mnemonic 

processes. 

The orexigenic gastrointestinal hormone, acyl-ghrelin, which is elevated during 

CR (Lutter et al., 2008), is known to cross the BBB and bind to the growth 

hormone secretagogue receptor (Ghsr) within the hippocampus (Diano et al., 

2006). Ghsr is necessary for the anxiolytic effect of CR and exogenous treatment 

with acyl-ghrelin reduces anxiety behavior (Lutter et al., 2008) and improves 

performance in spatial learning tasks (Carlini et al., 2010; Diano et al., 2006). 

Moreover, acyl-ghrelin increases cell proliferation in the hippocampus (Moon et 

al., 2009) and adult ghrelin deficient mice show reduced rates of new neuron 

differentiation that were restored to wild-type levels following acyl-ghrelin 

treatment (Li et al., 2013). These data demonstrate that supra-physiological 

doses of acyl-ghrelin improve cognition, however, more recently we showed that 

daily injections of acyl-ghrelin, at a dose similar to plasma concentrations after a 

24h fast, enhanced AHN and pattern separation memory performance (Kent et 

al., 2015). Based on these data we hypothesize that acyl-ghrelin mediates the 

neurogenic and cognitive enhancing effects of CR. 

Here, we demonstrate that Ghsr is expressed in mature granule cells of the DG 

and that elevating peripheral acyl-ghrelin, either by injection or CR, increases 

expression of the zinc finger transcription factor, early growth response 1 (Egr-

1) in the DG. Egr-1 is an immediate early gene involved in mitogenesis and 

differentiation that has recently been implicated in increasing AHN in mice 
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(Veyrac et al., 2013).  Using a two-week CR paradigm, paired with a BrdU pulse-

chase approach, we demonstrate that CR increases the subsequent generation of 

adult born mature neurons in a Ghsr-dependent manner. Furthermore, the 

increase in hippocampal plasticity was accompanied by enhanced remote 

contextual fear memory, a mnemonic process associated with AHN (Kitamura et 

al., 2009). Together, these results show that Ghsr is required to mediate the 

beneficial effects of CR on hippocampal plasticity and memory.  
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2. Materials and methods 

2.1 Animals 

All animal work was carried out with appropriate institutional approval at 

Swansea University, Texas A&M University and Monash University. 

 

Mice. Adult Ghsr-eGFP male mice (generated by the GENSAT project, Rockefeller 

University) (Spencer et al., 2012) were used (n=4/group). We raised acyl-ghrelin 

levels indirectly via CR (overnight, 16h fast), directly via injection (1mg/kg i.p), or 

with both injection and CR.  Acyl-ghrelin injections were performed to coincide 

with the final hour of the fast before mice were anesthetized with sodium 

pentobarbital and perfused transcardially with 0.9% NaCl solution, followed by 

4% paraformaldehyde (PFA) in 0.1M phosphate buffer, pH 7.4. Brains were post-

fixed in 4% PFA for 24h and cryoprotected in 30% sucrose. 

Adult male and female homozygous loxP TB-flanked Ghsr-/- mice and their wild-

type (WT) littermates (a gift from Prof Jeffrey Zigman, UT Southwestern, Texas; 

(Zigman et al., 2005)) were derived from crosses between animals that were 

heterozygous for the Ghsr-/- allele and that had been backcrossed >10 

generations onto a C57BL6/J genetic background. Ghsr-/- and WT littermate mice 

(12 weeks old) were individually housed for 7-days under normal laboratory 

conditions (12h light: 12h dark, lights on at 06.00h) prior to the onset of the 

study to acclimatize to housing conditions and to assess ad-libitum feeding for 

each genotype and sex. Mice were divided into four groups (n=12/group); ad-

libitum fed WT, CR WT, ad-libitum fed Ghsr-/- and CR Ghsr-/-. Each group had 6 

male and 6 female mice to allow analysis of sexual dimorphism in the response 

to CR. CR mice received 70% of the total food consumed by the ad-libitum fed 
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group for the first 14-days of the study. To accurately control for CR, food intake 

from ad-libitum fed animals was measured daily; on the subsequent day CR 

animals would receive 70% of this total. CR feeding was calculated for genotype 

and sex. On days 4-7 all mice received a daily injection of the thymidine 

analogue, BrdU (50mg/kg i.p), to label dividing cells. After 14-days the CR mice 

were allowed to feed ad-libitum for the rest of the study. This experiment was 

designed to limit acute effects of CR-elevated acyl-ghrelin on LTP and 

incorporation of GluA1 into excitatory hippocampal synapses (Ribeiro et al., 

2014). Furthermore, this BrdU pulse-chase approach was designed to allow 

specific quantification, via immunohistochemistry, of newborn cells that 

subsequently mature into neurons. All mice underwent fear memory 

assessments from day 31 to 45 (see below). Whilst fear conditioning may itself 

affect ongoing activity–induced neurogenesis in the DG it is unlikely to influence 

new mature neuron (BrdU+/NeuN+) number. Mice were killed on day 45 by 

cervical dislocation under terminal anesthesia, whole brain was removed, 

immersed in 4% PFA for 24h at 4oC, and cryoprotected in 30% sucrose. 

 

2.2 Contextual Fear Conditioning (CFC) 

CFC was used to assess hippocampus function and memory formation as 

previously described (van Woerden et al., 2007), with slight modification. Mice 

were moved to the test room for 30 minutes once a day for 6 days prior to 

conditioning. Equipment was wiped with 70% EtOH before each animal was 

introduced to the chamber. Mice were pre-exposed to a non-aversive context, a 

25×25 cm sound-attenuation chamber (Coulbourn Habitest chamber) with a 

wire grid floor, for 7.5 mins. 2 days later each mouse was placed inside a similar 
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but distinct (due to the addition of a colored wall panel) conditioning chamber 

for 2.5 mins before the onset of a 2 s foot shock (0.5 mA). After 2.5 mins, a second 

similar foot shock was delivered, and the mouse was returned to its home cage 

after another 2.5 min. Mice were tested for context-dependent fear (i.e freezing 

behaviour measured in the absence of foot shock) by returning them to the 

conditioning chamber for 2.5 mins 1d, 6d and 12d after conditioning. Presence 

(1) or absence (0) of freezing behavior was scored every 5 s by a trained 

observer for 2.5 mins (a total of 30 sampling intervals). The observer was 

blinded to the genotype (the cage cards were replaced by coded cards) but not to 

feeding regime. Freezing was expressed as a percentage of total number of 

observations. 

 

2.3 Immunohistochemistry 

Coronal sections (30μm) were cut into a 1:12 series along the entire extent of the 

hippocampus using a freezing-stage microtome (MicroM, ThermoScientific) and 

collected for IHC. All IHC was performed on free-floating sections at room 

temperature unless stated otherwise. 

For co-localisation of eGFP immunoreactivity sections were washed 3 times in 

PBS for 5 mins, permeabilised in methanol for 3 minutes at -20oC, washed again 

and blocked with 5% normal goat serum (NGS) in PBS plus 0.1% Triton (PBS-T) 

for 60 mins. Sections were incubated overnight at 4oC in chicken anti-eGFP 

(1:1000, ab13970, Abcam), washed as before and incubated in goat anti-chicken 

AF-488 (1:500, Life Technologies, USA) for 30 min in the dark. Sections were 

washed again prior to a 1h incubation in either mouse anti-NeuN (1:1000, 

Millipore, USA), mouse anti-Nestin (1:1000, ab6142, Abcam), rabbit anti-Sox2 
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(1:500, ab97959, Abcam), rabbit anti-Ki67 (1:500, ab16667, Abcam), rabbit anti-

c-Fos (1:500, SC-52, Santa Cruz, USA) or rabbit anti-Egr-1 (1:500, SC-189, Santa 

Cruz, USA) diluted in PBS-T. Following another wash the sections were incubated 

with either goat anti-mouse AF-568 or goat anti-rabbit AF-568 (1:500, Life 

Technologies, USA) for 30 min in the dark. After another wash, including one 

containing Hoechst stain, sections were mounted onto superfrost+ slides (VWR, 

France) with prolong-gold anti-fade solution (Life Technologies, USA). 

For BrdU/NeuN, sections were treated as described above with the exception 

that they were first permeabilised in methanol at -20oC for 3 min and washed 

prior to pre-treatment with 2N HCl for 30 min at 37oC followed by washing in 

0.1M borate buffer (pH 8.5) for 10 min. Sections were washed and blocked as 

above before being incubated overnight at 4oC in rat anti-BrdU (1:400, AbD 

Serotec), washed and incubated in goat anti-rat AF-488 (1:500, Life 

Technologies, USA) for 30 min in the dark. Sections were washed again prior to a 

1h incubation in mouse anti-NeuN (1:1000) diluted in PBS-T. Following another 

wash the sections were incubated with goat anti-mouse AF-568 (1:500) for 30 

min in the dark and mounted as above. 

 

2.4 Quantification of labeled cells 

A 1:12 series of 30μm sections (360μm apart) from each animal was stained and 

analyzed by fluorescent microscope (Axioscope, Zeiss) or LSM710 META 

inverted confocal microscope (Zeiss).  Immunolabelled cells were manually 

counted through the z-axis using a ×40 objective and throughout the rostro-

caudal extent of the granule cell layer. Resulting numbers were divided by the 

number of coronal sections analyzed and multiplied by the distance between 
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each section to obtain an estimate of the number of cells per DG. For 

quantification of DG volume, Hoechst nuclear stain was used on tissue sections as 

above and fluorescent area expressed as μm2 per section.  For quantification of 

eGFP with c-Fos or Egr-1 each brain region was anatomically defined using the 

Mouse Brain Atlas (Paxinos and Franklin, 2012) and cells expressed per mm2. 

Images were processed using Zen (Zeiss) or Image J software. All analyses were 

performed blind to genotype and treatment. 

 

2.5 Statistical analysis 

Statistical analyses were carried out using Graphpad Prism 6.0. For comparisons 

between 2 groups significance was assessed by unpaired Student’s t-test. For 

multiple groups with 1 variable factor a 1-way ANOVA was used, for 2 variable 

factors a two-way ANOVA was used. Appropriate post-hoc tests were used as 

described. Data are presented as mean ± s.e.m. *, P<0.05; **, P<0.01; ***, P<0.001 

were considered significant. 
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3. Results 

3.1 Ghsr is expressed in mature granule cell neurons of the dentate gyrus 

To determine whether the ghrelin receptor, Ghsr, is expressed in higher brain 

centers associated with regulating AHN we utilized the recently described Ghsr-

eGFP reporter mouse (Mani et al., 2014; Reichenbach et al., 2012). As generating 

antibodies to G-protein coupled receptors with high specificity is difficult due to 

instability of the purified protein, it has not been possible to accurately probe the 

cellular phenotype of Ghsr+ cells. We overcame this potential constraint by using 

an antibody raised against eGFP that is fused to the N-terminal of Ghsr. 

Consistent with previous in-situ hybridization results for Ghsr mRNA data 

(Zigman et al., 2006), Ghsr immunoreactivity (Diano et al., 2006) and with a 

more recent study using the same Ghsr-eGFP mouse model (Mani et al., 2014), 

Ghsr-eGFP expression was observed extensively throughout the hippocampal 

DG, including in the sub-granular zone (SGZ) (Figure 1 and S1). We further 

examined the phenotype of eGFP+ cells to reveal that Ghsr was extensively co-

expressed with the mature neuron marker, NeuN, in the granule cell layer (GCL) 

of the DG (Figure 1A-C). We observed eGFP+ cells in apposition to both type I 

(nestin+) and type II (Sox2+) NSPCs within the SGZ of the DG, however, we found 

no evidence for Ghsr expression in NSPCs (Figure 1D-I). In support of this, eGFP+ 

expression was not co-localised with proliferating Ki67+ cells within the SGZ 

(Figure 1J-L). eGFP immunoreactivity was also observed in hilar interneurons 

and in dense axon-like projections within the CA3. Very sparse, eGFP 

immunoreactivity was observed in the CA1 (Figure S1).  

In addition, we observed eGFP immunoreactivity in other extra-hypothalamic 

brain regions involved in regulating DG neurogenesis. Most notably, in the lateral 
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entorhinal cortex (Stone et al., 2011) and the basolateral amygdala (Kirby et al., 

2012) (Figure S1). 

 

3.2 Calorie restriction and acyl-ghrelin induce expression of neurogenic 

Egr-1 in the dentate gyrus. 

Next, we analyzed whether CR or acyl-ghrelin were able to induce expression of 

the immediate early gene, Egr-1 and the proto-oncogene, c-Fos, in DG neurons 

and in brain centers implicated in AHN. We raised acyl-ghrelin levels directly via 

injection, indirectly via CR, or with both injection and CR in Ghsr-eGFP mice. 16h 

after elevating acyl-ghrelin via CR, expression of Egr-1 was increased in the DG 

(Figure 2B, P<0.05), CgC (Figure 2F, P<0.05), and BLA  (Figure 2H, P<0.05). 

Similarly, acyl-ghrelin injection elevated DG (Figure 2B, P<0.05), CgC (Figure 2F, 

P<0.01) and BLA Egr-1 expression (Figure 2H, P<0.05), whilst the combination of 

acyl-ghrelin and CR increased Egr-1 expression in DG (Figure 2B, P<0.01), LEnt 

(Figure 2D, P<0.05), CgC (Figure 2F, P<0.05) and BLA (Figure 2H, P<0.05). 

Notably, there was a significant increase in Ghsr-eGFP+ cells co-expressing Egr-1 

in the CgC (Figure 2F) in response to CR (P<0.05), acyl-ghrelin (P<0.01) and 

CR/acyl-ghrelin (P<0.001) treatment. A similar response was also observed in 

the BLA in response to CR/acyl-ghrelin (Figure 2H, P<0.05). Conversely, c-Fos 

expression showed less consistent changes, with a significant decrease observed 

in the LEnt (Figure 2L, P<0.01) and BLA (Figure 2P, P<0.05) after acyl-ghrelin 

treatment and a similar reduction in the LEnt following CR (Figure 2L, P<0.01). 

However, we did observe an increase in c-Fos immunoreactivity in the SGZ of the 

DG (Figure 2J) in both the Ghsr-eGFP- (P<0.05) and Ghsr-eGFP+ (P<0.01) neurons 

following treatment with acyl-ghrelin. There was also an increase c-Fos+ cell 
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number in the LEnt (Figure 2L, P<0.05) after CR/acyl-ghrelin and CgC (Figure 

2N, P<0.01) after acyl-ghrelin treatment. A two-way ANOVA revealed that the 

Ghsr-eGFP+ cell population wasn’t more sensitive than the Ghsr-eGFP- 

population to elevated acyl-ghrelin, at least in its Egr-1 and c-Fos 

immunoreactivity. 

Analysis of cell proliferation revealed that the acute elevation of acyl-ghrelin, 

directly or indirectly, did not affect DG Ki67+ cell number and did not 

differentially regulate radial type I (Nestin+) or non-radial type II (Sox2+) NSPCs 

(Figure 3).  

 

3.3 Calorie restriction increases adult hippocampal neurogenesis and 

remote contextual fear memory in a Ghsr-dependent manner. 

Finally, as overnight CR increases Egr-1 expression in the DG and DG Egr-1 is 

associated with promoting the selection and functional integration of newborn 

cells in the adult DG (Veyrac et al., 2013), we analyzed the impact of a two-week 

period of CR on the subsequent generation of mature newborn DG neurons in 

wild-type and Ghsr-/- mice. Both WT and Ghsr-/- mice had similar sex-specific 

reductions in body weight in response to CR (Figure 4B), and both genotypes 

gained weight at a similar rate once they were allowed to feed ad-libitum after 

day 14 (Figure 4B). Despite 14 days of CR there was no difference in body weight 

change between the CR and ad-libitum fed groups from either genotype over the 

course of the 45-day period (Figure 4C, P>0.05). 

On day 31, 17 days after the final day of CR we subjected WT and Ghsr-/- mice to 

hippocampal-dependent contextual fear conditioning (CFC), a paradigm that is 
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sensitive to AHN (Kitamura et al. 2009; Gu et al. 2012). Ghsr-/- and WT littermate 

mice, which have similar levels of locomotion (Lutter et al., 2008), showed 

comparable levels of freezing after training in the ‘shock’ context, suggesting that 

both groups acquired and retained fear memory equally well (2-way ANOVA 

reported no effect of genotype (F (1,44)=0.8882, P=0.3511) or treatment (F 

(1,44)=0.009506, P=0.9228; Figure 4E). However, over time CR WT mice 

demonstrated enhanced fear memory. We observed a significant increase in fear 

memory maintenance 12 days after exposure to the fear condition in CR WT 

mice compared to ad-libitum fed WT littermates. A 2-way repeated measures 

ANOVA reported a significant interaction between genotype x treatment (F 

(6,88)=2.971, P =0.0109) and a post-hoc Tukey multiple comparison reported a 

significant difference between CR WT and ad-libitum fed WT littermates 

(P=0.0121). No significant differences were reported between Ghsr-/- mice on 

either diet (P=0.1837; Figure 3E). Notably, ad-libitum fed WT mice displayed 

progressive extinction of fear memory that reached statistical significance twelve 

days after conditioning (Day 1 post-conditioning vs Day 12 post-conditioning in 

WT/ad-libitum mice, P=0.0179). However, extinction of the fear memory was not 

observed in ad-libitum fed Ghsr-/- mice (Day 1 post-conditioning vs Day 12 post-

conditioning in Ghsr-/- / ad-libitum fed mice, P=0.1889), suggesting that ghrelin 

receptor signaling may be involved in this process. 

Subsequent analysis of brains collected on day 45, 31 days after the last day of 

CR and 38 days after the last BrdU injection, revealed that CR led to a 52% 

increase in the number of new adult-born neurons (BrdU+/NeuN+) in the rostral 

DG of WT mice compared to ad-libitum fed WT mice (2-way ANOVA, main effect 

of treatment (F (1,44)=5.806, P=0.0202); a post-hoc Tukey multiple comparison 
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confirmed a significant difference between CR and ad-libitum fed WT mice, 

P=0.048; Figure 4G). These data are comparable with our previous findings in 

rats that a physiological dose of acyl-ghrelin was sufficient to increase AHN in the 

rostral DG (Kent et al., 2015). In addition, CR increased the proportion of 

newborn cells that differentiated into mature neurons in WT mice (P=0.0108), 

but not in Ghsr-/- mice (P>0.99; Figure 4H). No differences were observed in new 

cell number with either genotype or treatment (P>0.05; Figure 4I). Whilst the DG 

volume in these experimental mice was not quantified, using a separate group of 

mice we report that WT and Ghsr-/- mice have no overt changes in DG 

morphology and that genetic ablation of Ghsr does not alter DG area (WT mice, 

2,095 ± 79.16μm2 vs Ghsr-/- mice, 2105 ± 66.46 μm2; n=3 per group, P=0.9236). 

Also, no difference was observed in BrdU+/NeuN+ cell number in the DG of ad-

libitum fed wild-type and Ghsr-/- mice (P=0.9812), suggesting that constitutive 

Ghsr signaling isn’t essential for basal AHN. These data show that the CR-

mediated enhancement of AHN is dependent on Ghsr.   
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4. Discussion 

Our data show that the ghrelin receptor, Ghsr, links energy homeostasis with a 

form of adult hippocampal plasticity. The presence of Ghsr on mature DG 

neurons suggest that acyl-ghrelin may modulate NSPCs indirectly, possibly via 

soluble factors such as BDNF that support AHN (Bekinschtein et al., 2013). 

Previous work suggests that ghrelin-treatment increases hippocampal BDNF 

levels in streptozotocin-induced diabetic rats (Ma et al., 2011), however, further 

studies are required to determine whether this neurotrophic factor is involved in 

AHN.  Similarly, under stressful conditions, the elevation in circulating acyl-

ghrelin (Lutter et al., 2008; Walker et al., 2014) may protect AHN by inhibiting 

the release of inflammatory cytokines such as interleukin-6 (Beynon et al., 2013), 

that are known to impair AHN (Monje et al., 2003; Vallières et al., 2002). 

Acyl-ghrelin is known to induce c-Fos and Egr-1 expression in mouse 

hypothalamus (Hewson and Dickson, 2000). We now show that c-Fos+ cells are 

increased in the DG following acyl-ghrelin treatment, but not following acute CR. 

However, we report for the first time a robust increase in Egr-1+ cells in the DG 

following treatment with either acyl-ghrelin or with CR. The increase in Egr-1 

was similarly observed both in DG cells expressing Ghsr and in cells lacking the 

receptor, suggesting that ghrelin signaling induces network expression of Egr-1 

within the DG. Furthermore, Egr-1 immunoreactivity was regulated in other 

brain regions, including the BLA and the cingulate cortex. Ultimately, a 

comprehensive dissection of these regions will need to be performed to identify 

their contribution to CR-mediated AHN and cognition. Nonetheless, our data 

suggest that Egr-1 may be particularly responsive to adaptations in energetic 

balance. Notably, hippocampal Egr-1 expression is rapidly induced by learning 
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and retrieval of memories, its blockade impairs memory formation (Bozon et al., 

2003; Jones et al., 2001) and in particular to the re-consolidation of hippocampal 

dependent contextual fear memories (Lee et al., 2004). More recently, Egr-1 

expression in mature DG neurons was shown to be essential for the survival, 

maturation and integration of newborn adult neurons into the hippocampal 

circuitry. Furthermore, Egr-1-KO mice showed deficits in hippocampal-

dependent long-term spatial memory (Veyrac et al., 2013). These findings 

suggest that the CR-mediated increase in Egr-1 within the DG may support 

cognition. 

Previous studies have demonstrated that CR increases the number of surviving 

newborn cells, rather than triggering proliferation, in the DG (Lee et al., 2002) in 

a ghrelin-dependent manner (Kim et al., 2015). However, the impact of CR on 

new neuron formation in the DG is unknown. These findings prompted us to ask 

whether a more prolonged period of CR would increase the number of new 

mature adult born DG neurons. Indeed, we show that a 2-week period of CR, with 

just a 30% reduction in daily calories, results in a significant increase in new 

neurons 31 days following the end of the CR period in wild-type but not Ghsr-/- 

mice, suggesting that ghrelin signaling mediates the neurogenic effect of CR. 

Whilst studies using ghrelin reporter mice suggest that the generation of acyl-

ghrelin is restricted to the periphery (Sakata et al., 2009), we cannot rule out the 

possibility that brain-derived ghrelin may influence AHN. In addition, it is 

possible that currently unknown Ghsr ligands, other than ghrelin, may play a role 

in promoting AHN in this context. However, as we have previously shown that 

peripheral treatment with acyl-ghrelin increases AHN (Kent et al., 2015) and that 

CR is known to elevate plasma ghrelin (Lutter et al., 2008), we suggest that the 
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CR-mediated and Ghsr-dependent increase in AHN is likely induced by acyl-

ghrelin.  

 

AHN is necessary for hippocampus-dependent memory and newborn neurons 

contribute to spatial pattern separation (Clelland et al., 2009). Notably, dendritic 

synapses of newborn adult neurons show enhanced plasticity between 4-6 

weeks of age compared with other stages (Ge et al., 2007). At this point they 

exhibit increased intrinsic excitability, lower activation threshold (Marin-Burgin 

et al., 2012; Schmidt-Hieber et al., 2004) and recruitment into circuits mediating 

behavior (Kee et al., 2007; Nakashiba et al., 2012; Tashiro et al., 2007). 

Optogenetic silencing of 28 day old adult born neurons resulted in impaired 

retrieval of a contextual fear memory (Gu et al., 2012). To test whether the CR-

mediated increase in AHN contributes to hippocampal function our study was 

designed so that newborn neurons were 4-6 weeks of age during the CFC 

assessment. In keeping with previous studies we show that the increase in 4-6 

week old neurons was associated with enhanced remote contextual fear 

memory. This improved retrieval of remote memory is consistent with increased 

re-consolidation over time; a process also associated with AHN (Kitamura et al., 

2009; Pan et al., 2012). These data suggest that CR-induced new adult born 

neurons assume functional roles in hippocampal circuits supporting mnemonic 

function. However, the extent to which the CR-mediated maintenance of remote 

fear memory is relevant to the Ghsr-dependent increase in AHN remains to be 

tested using more specific approaches. In particular, as AHN is essential for 

accurate pattern separation, testing our experimental paradigm using behavior 

tests that place a high demand on discrimination is now warranted. 
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Our findings raise the question, why would CR enhance remote memory? We 

speculate that in times of hunger the ability to remember an unsafe context 

would improve the likelihood of re-feeding successfully and thereby increase the 

chances of survival. This biological trait would confer a selective pressure and 

may underlie the beneficial effect of CR on longevity observed in a wide range of 

species.  

Ghsr may have therapeutic value in disorders associated with impairments in 

AHN. As anxiety disorders and enhanced fear responses observed in PTSD are 

linked with overgeneralization of similar but distinct memories (i.e poor 

discrimination), we suggest that acyl-ghrelin’s anti-anxiety effect (Lutter et al., 

2008) may, at least in part, be mediated by promoting AHN. Indeed, this is 

consistent with recent findings that the action of the P7C3 anti-depressant is 

dependent upon Ghsr mediated AHN (Walker et al., 2014). In addition, as AHN 

undergoes age-related decline and is aberrant in pre-clinical models of 

neurodegenerative diseases such as Alzheimer’s (Komuro et al., 2015) and 

Parkinson’s disease (Höglinger et al., 2004), activation of the ghrelin/Ghsr axis 

may be of therapeutic value in alleviating cognitive decline and promoting 

healthy ageing. Moreover, as diets high in fat reduce neurogenesis (Lindqvist et 

al., 2006) and impair cognition (Erion et al., 2014), our data suggest that this may 

be due, at least in part, to the well described reduction in circulating acyl-ghrelin 

by high fat diet (Tschöp et al., 2001). Interestingly, data has emerged suggesting 

the presence of a hypothalamic neurogenic zone that may regulate energy 

balance (for a review see (Rojczyk-Gołȩbiewska et al., 2014). Given the role of 

ghrelin in regulating orexigenic neurons in this region (Cowley et al., 2003), 

studies are warranted to investigate whether the peptide modulates new neuron 
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formation in the hypothalamus.  

As the causal factors that mediate exercise- and environmental enrichment-

induced AHN have yet to be determined, the identification of acyl-ghrelin/Ghsr 

as neurogenic modulators represents a significant advance in our understanding 

of hippocampal plasticity and may provide valuable therapeutic targets.  

 

Together, these findings demonstrate a previously unknown function for CR and 

Ghsr in enhancing AHN and remote contextual fear memory. 
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Figure Captions 

Figure 1. Ghsr is expressed in hippocampal granule cell neurons but not in 

NSPCs or proliferating cells. Ghsr-eGFP+ expression in mature granule cell 

neurons (NeuN+) in the dentate gyrus (A-C). No Ghsr-eGFP+ co-localisation with 

Sox2+ type II NSC’s (D-F), nestin+ type I NSC’s (G-I) or with the cell proliferation 

marker, Ki67 (J-L). n=6 mice per analysis. Scale bar = 50μm. For interpretation of 

the references to color in this figure legend, the reader is referred to the web 

version of the article. 

 

Figure 2. Calorie restriction and acyl-ghrelin increase Egr-1 expression in 

key learning and memory centers. Representative images of Egr-1+ (A, C, E, G) 

and c-Fos+ cells (I, K, M, O) following CR, acyl-ghrelin or a combination of both 

CR and acyl-ghrelin. Egr-1+ cell number was increased in the DG (B), LEnt (D), 

CgC (F) and BLA (H). c-Fos+ cell counts in the DG (J), LEnt (L), BLA (P) and LEnt 

(L). One-way ANOVA with Fishers LSD post-hoc analysis was used for statistical 

comparison. * P <0.05, ** P <0.01, *** P <0.001 vs vehicle treated control. All data 

shown are mean ± SEM. n=4 mice per group. Scale bar = 40μm. For 

interpretation of the references to color in this figure legend, the reader is 

referred to the web version of the article. 

 

Figure 3. Calorie restriction and acyl-ghrelin do not increase cell 

proliferation in the DG. Hippocampal cell proliferation (Ki67+) (A, B) was not 

affected by the acute elevation of acyl-ghrelin, by indirect (CR), direct (acyl-

ghrelin injection) or a combination of both means (C) (P >0.05). Similarly, 

treatments did not differentially regulate proliferation rates of either radial type 
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I (Nestin+) (D) or non-radial type II (Sox2+) (E) NSPCs (P >0.05). Representative 

images of Ki67+, nestin+ and Sox2+ cells in the hippocampal DG (A, B). Data 

represents mean ± SEM. Scale bar = 50μm. For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of the article. 

 

Figure 4. Calorie restriction enhances remote contextual fear memory and 

adult hippocampal neurogenesis in a Ghsr dependent manner. (A) 

Schematic of experimental paradigm. (B) Average daily body weight and (C) 

change in body weight in ad-libitum and CR mice over the study. n=12/group. 2-

way ANOVA/Tukey’s. (D) CFC paradigm. (E) Quantification of freezing in absence 

of foot shock. n=12/group. 2-way RM-ANOVA/Tukey’s: *p<0.05. (F) 

Representative images of BrdU+ (green) and NeuN+ (red) labeled new neurons in 

DG. Scale bar = 50μm. Quantification of new adult born mature neuron number 

(G), rate of neuronal differentiation in newly divided NSPCs (H) and number of 

new cells (I) in the rostral DG. n=12/group. 2-way ANOVA/Tukey’s: *p<0.05. All 

data shown are mean ± SEM. For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of the article. 
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