39 research outputs found

    Two prolonged viremic SARS-CoV-2 infections with conserved viral genome for two months.

    Get PDF
    We document two cases of viremic and prolonged active infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) where the viral genome was conserved for two months, but infection was with little or no symptoms. The first infection persisted for 80 days and the second for 62 days. Clearance of infection occurred 40 and 41 days, respectively, after development of detectable antibodies. Both cases were identified incidentally in an investigation of reinfection in a cohort of 133,266 laboratory-confirmed infected persons

    SARS-CoV-2 antibody-positivity protects against reinfection for at least seven months with 95% efficacy.

    Get PDF
    BACKGROUND: Reinfection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been documented, raising public health concerns. SARS-CoV-2 reinfections were assessed in a cohort of antibody-positive persons in Qatar. METHODS: All SARS-CoV-2 antibody-positive persons from April 16 to December 31, 2020 with a PCR-positive swab ≥14 days after the first-positive antibody test were investigated for evidence of reinfection. Viral genome sequencing was conducted for paired viral specimens to confirm reinfection. Incidence of reinfection was compared to incidence of infection in the complement cohort of those who were antibody-negative. FINDINGS: Among 43,044 antibody-positive persons who were followed for a median of 16.3 weeks (range: 0-34.6), 314 individuals (0.7%) had at least one PCR positive swab ≥14 days after the first-positive antibody test. Of these individuals, 129 (41.1%) had supporting epidemiological evidence for reinfection. Reinfection was next investigated using viral genome sequencing. Applying the viral-genome-sequencing confirmation rate, the incidence rate of reinfection was estimated at 0.66 per 10,000 person-weeks (95% CI: 0.56-0.78). Incidence rate of reinfection versus month of follow-up did not show any evidence of waning of immunity for over seven months of follow-up. Meanwhile, in the complement cohort of 149,923 antibody-negative persons followed for a median of 17.0 weeks (range: 0-45.6), incidence rate of infection was estimated at 13.69 per 10,000 person-weeks (95% CI: 13.22-14.14). Efficacy of natural infection against reinfection was estimated at 95.2% (95% CI: 94.1-96.0%). Reinfections were less severe than primary infections. Only one reinfection was severe, two were moderate, and none were critical or fatal. Most reinfections (66.7%) were diagnosed incidentally through random or routine testing, or through contact tracing. INTERPRETATION: Reinfection is rare in the young and international population of Qatar. Natural infection appears to elicit strong protection against reinfection with an efficacy ~95% for at least seven months. FUNDING: Biomedical Research Program, the Biostatistics, Epidemiology, and Biomathematics Research Core, and the Genomics Core, all at Weill Cornell Medicine-Qatar, the Ministry of Public Health, Hamad Medical Corporation, and the Qatar Genome Programme

    Complete Genome Sequence of the N2-Fixing Broad Host Range Endophyte Klebsiella pneumoniae 342 and Virulence Predictions Verified in Mice

    Get PDF
    We report here the sequencing and analysis of the genome of the nitrogen-fixing endophyte, Klebsiella pneumoniae 342. Although K. pneumoniae 342 is a member of the enteric bacteria, it serves as a model for studies of endophytic, plant-bacterial associations due to its efficient colonization of plant tissues (including maize and wheat, two of the most important crops in the world), while maintaining a mutualistic relationship that encompasses supplying organic nitrogen to the host plant. Genomic analysis examined K. pneumoniae 342 for the presence of previously identified genes from other bacteria involved in colonization of, or growth in, plants. From this set, approximately one-third were identified in K. pneumoniae 342, suggesting additional factors most likely contribute to its endophytic lifestyle. Comparative genome analyses were used to provide new insights into this question. Results included the identification of metabolic pathways and other features devoted to processing plant-derived cellulosic and aromatic compounds, and a robust complement of transport genes (15.4%), one of the highest percentages in bacterial genomes sequenced. Although virulence and antibiotic resistance genes were predicted, experiments conducted using mouse models showed pathogenicity to be attenuated in this strain. Comparative genomic analyses with the presumed human pathogen K. pneumoniae MGH78578 revealed that MGH78578 apparently cannot fix nitrogen, and the distribution of genes essential to surface attachment, secretion, transport, and regulation and signaling varied between each genome, which may indicate critical divergences between the strains that influence their preferred host ranges and lifestyles (endophytic plant associations for K. pneumoniae 342 and presumably human pathogenesis for MGH78578). Little genome information is available concerning endophytic bacteria. The K. pneumoniae 342 genome will drive new research into this less-understood, but important category of bacterial-plant host relationships, which could ultimately enhance growth and nutrition of important agricultural crops and development of plant-derived products and biofuels

    Genotyping-by-sequencing identifies date palm clone preference in agronomics of the State of Qatar.

    No full text
    Understanding the genetic diversity in a crop population is key to its targeted breeding for desired traits, such as higher yields, better fruit quality and resistance to disease and changing climates. Date fruits represent a major crop in the Middle East and are key to achieving future food independence in arid countries like Qatar. We previously determined the genome of the date palm Phoenix dactylifera and showed that date palm trees world-wide divide into two distinct subpopulations of Eastern and Western origins. Here we applied a resource of SNPs from 179 commercially available date fruits to assess the genetic diversity of date palm trees grown in the State of Qatar. We found that palm trees in Qatar are mainly of Eastern origin, and that their genetic diversity doesn't associate with regions of the State. Together with targeted genetic assays, our resource can be used in the future for date palm cultivar identification, to aid selecting suitable cultivars for targeted breeding, to improve a country's date palm genetic diversity, and to certify the origin of date fruits and trees

    A Frameshift Mutation in KIT is Associated with  White Spotting in the Arabian Camel

    No full text
    While the typical Arabian camel is characterized by a single colored coat, there are rare populations with white spotting patterns. White spotting coat patterns are found in virtually all domesticated species, but are rare in wild species. Theories suggest that white spotting is linked to the domestication process, and is occasionally associated with health disorders. Though mutations have been found in a diverse array of species, fewer than 30 genes have been associated with spotting patterns, thus providing a key set of candidate genes for the Arabian camel. We obtained 26 spotted camels and 24 solid controls for candidate gene analysis. One spotted and eight solid camels were whole genome sequenced as part of a separate project. The spotted camel was heterozygous for a frameshift deletion in KIT (c.1842delG, named KITW1 for White spotting 1), whereas all other camels were wild‐type (KIT+/KIT+). No additional mutations unique to the spotted camel were detected in the EDNRB, EDN3, SOX10, KITLG, PDGFRA, MITF, and PAX3 candidate white spotting genes. Sanger sequencing of the study population identified an additional five kITW1/KIT+ spotted camels. The frameshift results in a premature stop codon five amino acids downstream, thus terminating KIT at the tyrosine kinase domain. An additional 13 spotted camels tested KIT+/KIT+, but due to phenotypic differences when compared to the KITW1/KIT+ camels, they likely represent an independent mutation. Our study suggests that there are at least two causes of white spotting in the Arabian camel, the newly described KITW1 allele and an uncharacterized mutation

    Retinal nerve fibre layer thinning and corneal nerve loss in patients with Bardet-Biedl syndrome

    No full text
    Abstract Background Bardet-Biedl syndrome (BBS) is an autosomal recessive, genetically heterogeneous, pleiotropic disorder caused by variants in genes involved in the function of the primary cilium. We have harnessed genomics to identify BBS and ophthalmic technologies to describe novel features of BBS. Case presentation A patient with an unclear diagnosis of syndromic type 2 diabetes mellitus, another affected sibling and unaffected siblings and parents were sequenced using DNA extracted from saliva samples. Corneal confocal microscopy (CCM) and retinal spectral domain optical coherence tomography (SD-OCT) were used to identify novel ophthalmic features in these patients. The two affected individuals had a homozygous variant in C8orf37 (p.Trp185*). SD-OCT and CCM demonstrated a marked and patchy reduction in the retinal nerve fiber layer thickness and loss of corneal nerve fibers, respectively. Conclusion This report highlights the use of ophthalmic imaging to identify novel retinal and corneal abnormalities that extend the phenotype of BBS in a patient with syndromic type 2 diabetes
    corecore