193 research outputs found

    Polyrotaxane: New generation of sustainable, ultra-flexible, form-stable and smart phase change materials.

    Get PDF
    The development of thermal energy storage materials is the most attractive strategy to harvest the solar energy and increase the energy utilization efficiency. Phase change materials (PCMs) have received much attention in this research field for several decades. Herein, we reported a new kind of PCM micro topological structure, design direction, and the ultra-flexible, form-stable and smart PCMs, polyrotaxane. The structure of polyrotaxane was fully confirmed by 1H nuclear magnetic resonance, attenuated total reflection-fourier transform infrared and X-ray diffraction. Then the tensile properties, thermal stability in the air, phase change energy storage and shape memory properties of the films were systematically analyzed. The results showed that all the mechanical performance, thermal stability in air and shape memory properties of polyrotaxanes were enhanced significantly compared to those of polyethylene oxide (PEO). The form stability at temperatures above the melting point of PEO significantly increased with the Îą-CD addition. Further with the high phase transition enthalpy and excellent cycle performance, the polyrotaxane films are therefore promising sustainable and advanced form-stable phase change materials for thermal energy storage. Notably, its ultra-high flexibility, remolding ability and excellent shape memory properties provide a convenient way for the intelligent heat treatment packaging of complex and flexible electronic devices. In addition, this is a totally novel insight for polyrotaxane application and new design method for form-stable PCMs.post-print4492 K

    Stability analysis of load frequency control for power systems with interval time-varying delays

    Get PDF
    This study investigates the stability problem of load frequency control (LFC) for power systems with interval time-varying delays. The two categories of time delays, the lower bound being zero and non-zero, are considered. The systems can be described as time delay systems of load disturbances. First, an augmented Lyapunov–Krasovskii functional (LKF) is constructed. Some delay-dependent nonintegral terms and single integral terms are additionally introduced to make full use of the information on the system state variables and the time-varying delays. Second, to overcome the problem of nonlinear inequalities caused by the augmented LKF, the nonlinear inequalities are converted into linear matrix inequalities (LMIs) by applying the new negative definite inequality equivalence transformation lemma, which can be solved easily by the MATLAB LMI toolbox. A new stability criterion is presented by applying the Lyapunov stability theory. The stability criterion is less conservative than some existing literature studies, which further improves the stability margin for the power systems based on LFC. Finally, some numerical examples are given to show the effectiveness of the proposed method and the superiority of the results

    Cosmic test of sTGC detector prototype made in China for ATLAS experiment upgrade

    Full text link
    Following the Higgs particle discovery, the Large Hadron Collider complex will be upgraded in several phases allowing the luminosity to increase to 7×1034cm−2s−17 \times 10^{34}cm^{-2}s^{-1}. In order to adapt the ATLAS detector to the higher luminosity environment after the upgrade, part of the ATLAS muon end-cap system, the Small Wheel, will be replaced by the New Small Wheel. The New Small Wheel includes two kinds of detectors: small-strip Thin Gap Chambers and Micromegas. Shandong University, part of the ATLAS collaboration, participates in the construction of the ATLAS New Small Wheel by developing, producing and testing the performance of part of the small-strip Thin Gap Chambers. This paper describes the construction and cosmic-ray testing of small-strip Thin Gap Chambers in Shandong University

    Meeting High Stability and Efficiency in Hybrid Light‐Emitting Diodes Based on SiO2/ZrO2 Coated CsPbBr3 Perovskite Nanocrystals

    Get PDF
    Significant advances are realized in perovskite‐converted hybrid light‐emitting diodes (pc‐HLEDs). However, long‐living devices at high efficiencies still represent a major milestone with average stabilities of <200 h at ≈50 lm W−1 under low applied currents (<15 mA). Herein, a dual metal oxide‐coated CsPbBr3@SiO2/ZrO2 composite is prepared in a one‐pot synthesis through the kinetic control of the sol–gel reaction, followed by a gentle drying process in air. These hybrid nanoparticles show photoluminescence quantum yields of ≈65% that are stable under temperature, ambient, and irradiation stress scenarios. This is translated to pc‐HLEDs with a near‐unity conversion efficiency at any applied current, high efficiencies around 75 lm W−1, and one of the most remarkable stabilities of ≈200 and 700 h at 100 and 10 mA, respectively. In addition, the device degradation mechanism is thoughtfully rationalized comparing devices operating under ambient/inert conditions. As such, this work provides three milestones: i) a new room temperature one‐pot protocol to realize the first SiO2/ZrO2 metal oxide coating that effectively protects the emitting perovskite nanoparticle core, ii) one of the most stable and efficient pc‐HLEDs operating under ambient condition at any applied current, and iii) new insights for the degradation of pc‐HLEDs.R.D.C. acknowledges the program “Ayudas para la atracción de talento investigador—Modalidad 1 of the Consejería de Educación, Juventud y Deporte—Comunidad de Madrid with the Reference No. 2016‐T1/IND‐ 1463,” Spanish Ministry of Economy and Competitiveness (MINECO) for the Ramón y Cajal program (RYC‐2016‐20891), and HYNANOSC (RTI2018‐099504‐A‐C22). Y.Y.D. also thanks the financial support from China Scholarship Council (No. 201808440326). This work was supported by the Spanish MICINN and Agencia Estatal de Investigación (AEI)/European Regional Development Fund (FEDER) (Projects CTQ2015‐74494‐JIN, CTQ2016‐78463‐P, RTI2018‐099504‐B‐C21/A‐C22, and PID2019‐109742GB‐I00). E.S. thanks Universidad de Alicante through the “Programa de Retención de Talento” (ref. UATALENTO16‐03) and C.E. thanks Universidad de La Rioja for a grant. Open access funding enabled and organized by Projekt DEAL

    The roles of SMYD4 in epigenetic regulation of cardiac development in zebrafish

    Get PDF
    SMYD4 belongs to a family of lysine methyltransferases. We analyzed the role of smyd4 in zebrafish development by generating a smyd4 mutant zebrafish line (smyd4L544Efs*1) using the CRISPR/Cas9 technology. The maternal and zygotic smyd4L544Efs*1 mutants demonstrated severe cardiac malformations, including defects in left-right patterning and looping and hypoplastic ventricles, suggesting that smyd4 was critical for heart development. Importantly, we identified two rare SMYD4 genetic variants in a 208-patient cohort with congenital heart defects. Both biochemical and functional analyses indicated that SMYD4(G345D) was pathogenic. Our data suggested that smyd4 functions as a histone methyltransferase and, by interacting with HDAC1, also serves as a potential modulator for histone acetylation. Transcriptome and bioinformatics analyses of smyd4L544Efs*1 and wild-type developing hearts suggested that smyd4 is a key epigenetic regulator involved in regulating endoplasmic reticulum-mediated protein processing and several important metabolic pathways in developing zebrafish hearts

    Research Progress on Diapause in Flies (Diptera)

    Get PDF
    Diapause is a physiological process in which insects can survive in a natural environment that is not conducive to their survival, which is the result of long-term adaptation to environmental conditions. It provides a great adaptive advantage for insects, allowing insects to survive in unsuitable seasonal environments to synchronize their life cycles with those suitable for growth, development, and reproduction. The process of regulating insect diapause is a complex process interacting with multiple mechanisms. In this chapter, a review is given of the current knowledge of diapause types, environmental inducing factors, sensitive states, and the endogenous molecular mechanism associated with diapause in flies (Diptera). Research regarding both the diapause process and intrinsic mechanism is reviewed

    Holy Water: Photo-Brightening in Quasi-2D Perovskite Films under Ambient Enables Highly Performing Light-Emitting Diodes

    Get PDF
    Quasi-2D perovskites provide new opportunities for lighting and display applications due to their high radiative recombination and excellent stability. However, seldom attention has been placed on their self-stability/working operation under ambient storage. Herein, quasi-2D perovskites/Polyethylene oxide (PEO) films are studied, showing an unforeseen photo-brightening effect under ambient storage (i.e., an increase of the photoluminescence quantum yield from 55% to 74% after 100 days). In stark contrast, those stored under a dark/inert atmosphere show a significant decrease down to 38%. This counterintuitive phenomenon responds to the increasing radiative recombination rate caused by the passivation of the surface Br vacancies in the presence of physically adsorbed water molecules, as corroborated by in situ/ex situ X-ray photoelectron spectroscopy and density functional theory calculations. Capitalizing on this surprising effect, stable light-emitting diodes (LEDs) using quasi-2D perovskites/PEO color filters are fabricated, realizing high stabilities of ≈400 h@10 mA under operating ambient conditions, representing a 20-fold enhancement compared to LEDs with 3D counter partners. Hence, this study reveals a unique insight into the impact of water passivation on the optical/structural properties of quasi-2D perovskite films, broadening their applications under operating ambient conditions.Y.D. thanks the financial support from the China Scholarship Council (CSC, no. 201808440326). Financial support has been received from AEI-MINECO/FEDER, UE through the Nympha Project (PID2019-106315RB-I00), the regional government of "Comunidad de Madrid" and the European Structural Funds through FotoArt-CM Project (S2018/NMT-4367). F.O. acknowledges funding from the Marie Skłodowska-Curie grant agreement no 754382. M.U.K. and G.N. thank ELI-ALPS, which is supported by the European Union and co-financed by the European Regional Development Fund (GI-NOP-2.3.6-15-2015-00001). This publication has also received funding from PANOSC, the European Union's Horizon 2020 research and innovation programme under grant agreement no 823852. M.U.K. and G.N. also acknowledge Project no. 2019-2.1.13-TÉT-IN-2020-00059 which has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the 2019-2.1.13-TÉT-IN funding scheme. O.A.R. has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 899987. R.D.C. and L.M.C. acknowledge the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 956923

    The joint effects of room temperature ionic liquids and ordered media on fluorescence characteristics of estrogens in water and methanol

    Full text link
    This study investigated the steady-state and time-resolved fluorescence properties of 17ι-ethinylestradiol (EE2) and 17β-estradiol (E2) in the presence of ordered media (β-cyclodextrins (β-CD) and cetyltrimethylammonium bromide (CTAB)). In addition, we analyzed the effects of four room temperature ionic liquids (RTILs) on the fluorescence intensities (FIs) of EE2/β-CD and E2/β-CD inclusion complexes in methanol. Both β-CD and CTAB enhanced the fluorescence of EE2 and E2. The FIs of EE2 and E2 with β-CD or CTAB in methanol were greater than those in water, possibly resulting from decreased oxygen-quenching in H2O molecules. β-CD and CTAB may form inclusion complexes with estrogen in both water and methanol. The inclusion ratio of the complex was 1:1 and the inclusion constant (K) values in water were greater than those in methanol. The fluorescence lifetimes were 2.50 and 4.13 ns for EE2 and 2.58 and 4.03 ns for E2 in aqueous solution and methanol, respectively. The changing trend of fluorescence lifetimes for EE2 and E2 in β-CD or CTAB was similar to the steady-state FIs. The four RTILs had a significant quenching effect on the FIs of EE2/β-CD and E2/β-CD, and the quenching process for EE2/β-CD and E2/β-CD by RTILs was demonstrated to be a dynamic quenching mechanism. Fluorescent data obtained from these complex systems provide a theoretical foundation for understanding the interaction mechanisms between ordered media and RTILs in the analysis of estrogens
    • …
    corecore