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Abstract

Diapause is a physiological process in which insects can survive in a natural 
environment that is not conducive to their survival, which is the result of long-term 
adaptation to environmental conditions. It provides a great adaptive advantage for 
insects, allowing insects to survive in unsuitable seasonal environments to synchro-
nize their life cycles with those suitable for growth, development, and reproduction. 
The process of regulating insect diapause is a complex process interacting with 
multiple mechanisms. In this chapter, a review is given of the current knowledge of 
diapause types, environmental inducing factors, sensitive states, and the endogenous 
molecular mechanism associated with diapause in flies (Diptera). Research regarding 
both the diapause process and intrinsic mechanism is reviewed.

Keywords: diapause, stages of diapause, biotic and abiotic factors, molecular 
mechanisms, Diptera

1. Introduction

Diapause is a state in which insects suspend or arrest the development in response 
to unfavorable environmental cues. It is an adaptive mechanism with a genetic 
basis, regulated by the external and internal environment factors, and occurs in 
a specific stage during the life cycle of an insect such as embryonic, larval, pupal, 
and active adult stage. Once induced, diapause cannot be immediately terminated 
even if unfavorable conditions disappear, unless a certain break period has been 
experienced. Diapause is terminated with the return of appropriate environmental 
conditions (temperature, light, moisture, etc.), and physical and chemical conditions 
[1]. Diapause provides an adaptive advantage for insects, allowing them to continue 
surviving in unfavorable seasonal environments and ensuring that their life cycle is 
synchronized with conditions suitable for growth, development, and reproduction.

There are two types of diapause, obligatory diapause and facultative diapause. 
Obligatory diapause, also known as absolute diapause, means that insects have 
to enter diapause to complete their life cycle, regardless of environmental condi-
tions. It is most found in univoltine insects (one generation per year). For example, 
Anthocharis cardamines is a univoltine butterfly species that has an obligate pupal dia-
pause in United Kingdom [2]. Facultative diapause, also known as random diapause, 
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means that insects start this process only when environmental conditions become 
adverse. It is most commonly seen in bivoltine (two generations per year) or multivol-
tine insects (more than two generations per year). For example, the bivoltine strain 
of the silkworm, Bombyx mori, has a facultative embryonic diapause in Japan [3]. The 
generation of diapause is variable, but the life stage in which diapause occurs is fixed. 
Thus, photoperiod, together with temperature and other environmental factors, leads 
to a facultative diapause in insects. For insects, the significance of diapause is not only 
to enable them to survive the adverse environmental conditions, but also to make the 
population as uniform as possible, which greatly increases the possibility of male and 
female mating and thus ensures the reproduction of the population. To meet energetic 
costs, insects use two methods that are metabolic depression and energy storage. By 
reducing their metabolic consumption, insects can accelerate the accumulate energy 
to enhance their resistance to adverse environments [4]. In recent years, the research 
results on diapause of the order of Diptera have increased. This chapter classifies the 
research progress of diapause in Diptera, including the main groups, types, stages, 
parental effects, diapause-inducing factors, and mechanisms of molecular regulation. 
It provides theoretical support for population control of Diptera pests and effective 
biocontrol using natural enemies [5].

2. Taxa of diapause

Diptera is the fourth largest order after Coleoptera, Lepidoptera, and 
Hymenoptera. In terms of diapause research, 85 species of Diptera have been studied, 
including Tephritidae, Culicidae, Calliphoridae, Agromyzidae, Oestridae, Muscidae, 
Anthomyiidae, Tachinidae, Drosophilidae, and Cecidomyidae (Figure 1).

Figure 1. 
Taxa of dipause in Diptera.
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3. Types of diapause

Diapause can be categorized according to life stages as an egg (embryonic), larval, 
nymphal, or adult diapause (Table 1). Based on the hereditary feature, there are two 
types of diapause, one mandatory (obligate diapause) and one optional (facultative 
diapause) (Table 1).

Insects with obligate diapause enter diapause at a fixed developmental stage on 
schedule no matter how the external environmental conditions are, while those with 
facultative diapause can be induced into diapause at a certain stage but uncertain 
generation. Diapause is mainly affected by the changes in external environmental 
conditions. When the environmental conditions are unfavorable, insects enter 
the diapause, otherwise they continue to develop. Flies also experience diapause 
in the pupal stage (quiescent stage), during which the activity is extremely weak. 
Sarcophaga similis and Haematobia irritans have a pupal diapause [6], with the pupal 
diapause of the parasitoid fly Exorista civilis occurring within the insect host. Pupal 
diapause, common in other Diptera, is conspicuously absent in the Culicidae, whose 
members may pass through diapause as eggs, larvae, or adults. Aedes albopictus 
overwinters as diapausing eggs in temperate climates [7]. For Chlorops oryzae, dia-
pause occurs as larvae, triggered by conditions experienced by the egg [8]. Diapause 
of Procontarinia mangifera is observed in larvae [9], Adult reproductive diapause 
occurs in Drosophila suzukii and Protophormia terraenovae [10]. The third-instar lar-
vae of Eurosta solidaginis show obvious hibernation (winter diapause) characteristics 
[11]. Once Lucilia sericata reaches the third instar, larvae stop feeding and then enter 
diapause [12]. Sitodiplosis mosellana undergoes diapause as larvae in the soil [13].

Classification Characteristics

Diapause induction stage Embryonic diapause occurs at any stage of insect embryo 

development; regulated by the 

brain-hypopharyngeal gland-

diapause hormone endocrine system

Larval diapause occurs at any instar of larval larvae, 

but mostly occurs at the late larval 

stage

Nymphal diapause commonly happen in Diptera and 

Lepidoptera, which is regulated by 

brain-prothoracic-corpora allata 

interaction

Adult diapause commonly occurs in Coleoptera, 

Lepidoptera, Hemiptera, Diptera, 

Homoptera, and Orthoptera, and is 

regulated by the islet- corpora allata

Hereditary feature Obligatory diapause insects have no choice but to enter 

this process at some stage in their 

life.

Facultative diapause insects will start this process only 

when environmental conditions 

become adverse

Table 1. 
Types of diapause.
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4. Incidence of diapause

The diapause process can be divided into three phases: pre-diapause, diapause, 
and post-diapause. Pre-diapause occurs before the beginning of unfavorable 
environmental cues. Insects in this phase forecast an impending transformation in 
certain environmental stimuli in a special way, and change their internal neuro-
endocrine system and metabolism level to enter diapause. At this stage, insects 
maintain normal development, which include induction and preparation stage 
[14]. The induction stage happens before the beginning of unfavorable environ-
mental cues. Insects receive these specific environmental stimuli called “token 
stimuli” such as photoperiod, temperature, humidity, and food, to regulate their 
development and decide whether to enter diapause or not. Larvae of S. mosellana 
enter diapause at a long day length [15]. The preparation phase is followed by 
the induction phase, during which insects accumulate energy substances such 
as lipids, sugars, and amino acids. Lipids provide a large amount of nutrition 
for insects in diapause and prevent heat loss and mechanical damage [16]. 
Saccharides such as glycogen and trehalose, as instant sources of energy, play a 
crucial role in dealing with abiotic stresses [17]. Amino acids reserve help in both 
providing raw materials for protein synthesis of diapause insects and resistance 
to cold and desiccation. Amino acids are stored prior to diapause, but they help in 
maintaining life activities during diapause and post-diapause [16]. Previous stud-
ies of diapause in Culex pipiens demonstrated that during the diapause, mosquito 
accumulated more sugar than non-diapause mosquitoes [18].

Because of frequent observations of changing responses to various environmental 
conditions, diapause is divided into three eco-physiological sub-phases: initiation, 
maintenance, and termination [14]. The incidence of diapause is affected by a variety 
of factors. Many insects enter diapause at any stage of their life cycle, but for some 
species, the diapause stage is fixed, which can be judged by observing the color, 
appearance, and cocoon making of insect bodies [14, 19–21]. The maintenance phase 
refers to the period in which the insect remains undeveloped even under favorable 
developmental conditions, and the respiration and metabolic rates are at low levels. 
The diapause maintenance period of different insects varies greatly, ranging from 
a few weeks to several months or even several years. With the return of favorable 
environmental conditions, the intensity of diapause gradually decreases and enters 
the diapause termination. At this stage, insects are sensitive to temperature factors, 
especially low temperatures. In addition, photoperiod can induce diapause termi-
nation. Application of exogenous substances can also break insect diapause. For 
example, exogenous ecdysterone can terminate the diapause of Bactrocera minax [22].

In the termination phase, insects enter the next inactivity period if the environ-
mental conditions are still unfavorable; however, they start resuming their physi-
ological development [14].

5. Parental effects on diapause

Parents exhibit a greater effect on the diapause phenotype of their offspring, which 
defines as parental effect [23]. Parental effect is subject to natural selection, and it 
is the response mechanism of phenotypes to environmental heterogeneity [24, 25]. 
Among the parental effects, the female parent exhibits a greater influence than the 



5

Research Progress on Diapause in Flies (Diptera)
DOI: http://dx.doi.org/10.5772/intechopen.106158

male parent, so maternal inheritance is considered to be a short form of non-Mende-
lian parental effect (including maternal and paternal inheritance). For insects, female 
effects on offspring are relatively common. The parental effect of diapause in Diptera 
is mainly affected by environmental conditions such as diapause duration, photope-
riod, temperature, and parental factors. Ordinarily, parents produce more diapausing 
progeny if they experience short-day length, limited resources, or low temperature 
[26]. In the study of A. albopictus, maternal photoperiod has a direct influence on egg 
size and embryogenesis [27].

Larval diapause in the blow fly Calliphora vicina is induced by their mothers to 
cope with short-day photoperiods. Due to the various photoperiod and temperature 
of the parents, the process of C. vicina larval diapause can vary in duration, indicat-
ing that the accumulations of diapause stimuli by parents significantly influence 
the intensity and incidence of progeny diapause [28]. The incidence of diapause 
is completely under maternal control and is not affected by the male [29]. Lucilia 
sericata has a facultative diapause in the third larval instar after cessation of feeding. 
Induction of the diapause is influenced by the photoperiod and temperature condi-
tions experienced by insects in the parental generation as well as those experienced 
by the larvae themselves [30]. In Sarcophaga bullata, a maternal effect blocks the 
programming of diapause in progeny of females reared in short-day length that have 
experienced pupal diapause [31].

6. Environmental cues for diapause induction

Insect diapause is a complex process in which many mechanisms interact with each 
other. The major environmental signals regulating diapause onset in insects include 
temperature, photoperiod, food, and population density. Studies on insect diapause 
show that the primary cause and state of diapause can be identified and insects could 
be induced into diapause by artificially simulating diapause conditions in the field. 
Environmental cues, mostly temperature and photoperiod, control reproductive 
diapause in flies (Diptera), which regulate the induction, maintenance, and termina-
tion of diapause.

Seasonal change in photoperiod is the most reliable information to detect the 
time of year and is the major environmental signal regulating diapause onset 
in most insects. Photoperiod refers the period of time in a day that an organism 
is exposed to light or, more simply, day length. Photoperiodism is a biological 
response to a change in the proportions of light and dark in a daily (24 h) cycle, 
and the average number of daylight hours that cause insect diapause is known as 
“critical photoperiod.” When insects respond to changes in light intensity through 
the brain or compound eyes, the internal “timer” automatically evaluates the 
length of day or night and regulates the insects to enter the diapause [32]. Usually, 
the diapause of Diptera is caused by short-day length. A. albopictus enters diapause 
with short-day length. The photoperiodic diapause is a crucial ecophysiological 
adaptation of A. albopictus to climate change in North America and strongly affects 
seasonal population dynamics, thus affecting the transmission potential of arbovi-
ruses [33]. Chlorops oryzae enters summer diapause under long day length, but the 
critical photoperiod is shortened with the increased temperature [34]. In C. oryzae, 
winter diapause in the first larval stage is induced by short-day length in the egg 
stage and maintained by short days in the larval stage [35]. D. suzukii is shown to be 
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a typical of short-day length diapause species [9], and also, S. similis enters pupal 
diapause under short-day conditions [36].

Temperature is another major environmental signal regulating diapause, espe-
cially for Diptera. Linothele sericata can be stored at 7.5°C for several months and is 
seen as a potential replacement for honeybees, whose diapause is mainly affected by 
low temperatures in winter [37, 38]. The Chinese citrus fruit fly, B. minax, exhibits 
pupal diapause in the soil from November to March in the next year, and the pupal 
period increases with pupal weight. Temperature before entering diapause is a reason-
able index to predict overwintering individuals [11]. P. terraenovae adults do not enter 
diapause at 30°C in either long-day or short-day conditions; however, between 17.5 
and 27.5°C, the insect shows a long-day photoperiodic response, indicating that the 
diapause is mainly induced by low temperature [39].

Diapause in some species of flies is subject to both photoperiod and temperature; 
for example, the dominant diapause cues of M. autumnalis and H. irritans are prob-
ably both photoperiod and temperature [40]. The critical day length for Aphidoletes 
aphidimyza diapause induction is determined to be 12.7 h at 20°C. Diapause incidence 
is completely prevented at 30°C even though the photoperiod used is 11 L–13D. In 
addition, diapause induction is 100% under changing temperature conditions while 
maintaining the critical day length (12.7 L–11.3D), and diapause incidence is 100% 
in both field and greenhouse conditions under alternating temperatures of 20/16 or 
25/16°C [41]. Winter diapause of Delia antiqua is completed under constant diapause-
inducing conditions of 15°C and 12 L–12D, and the pupal period is shortened sig-
nificantly [42]. The critical photoperiod for inducing diapause of E. civilis is between 
11.8 and 11.9 h, while it can be induced into diapause at longer day lengths when the 
temperature is lower [43]. The incidence of E. civilis diapause is also influenced by the 
temperature and photoperiod. It is found that lower temperature prolongs the larval 
diapause period, and the diapause rate decreases under the high temperatures. All 
larvae enter diapause at 17°C, whereas the larvae become sluggish and stiff when tem-
perature is lower than 17°C and death increases. The diapause rate is negatively cor-
related with light duration at 21°C. Diapause cannot be induced by short-day lengths 
at 25°C. Low temperature and short photoperiod are the most important prerequisites 
for inducing E. civilis diapause, among which temperature is the dominant factor, and 
photoperiod affects diapause induction only at certain temperatures.

7. Molecular mechanisms of diapause

7.1 Hormonal and metabolic regulation

Endogenous regulatory factors of insect diapause mainly focused on neuroen-
docrine systems, hormone signaling pathways, and energy metabolism pathways. 
Studies on Drosophila show that when insulin-like signals are disrupted, fruit flies 
stop reproducing, and their energy reserves increase [44]. Inhibiting FOXO and 
insulin-like polypeptide-1 (ILP-1) change many diapause phenotypes of C. pipiens 
such as increase stress resistance, fat accumulation, and delayed development [45]. 
Therefore, insulin signaling is thought to be an important candidate pathway to study 
differential regulation of diapause metabolism.

Juvenile hormone (JH), a sesquiterpenoid hormone produced by the corpus 
allatum (CA) of insects, is one of the most important hormones in insects and plays a 
key role in preventing larval metamorphosis, maintaining larval state, and regulating 
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adult developmental and physiological process. It also plays a crucial role in the 
expression of vitellogenin, oocyte maturation, and development. The interaction 
between genes associated with juvenile hormone pathway is complex, which means 
genes directly or indirectly participate in the regulation of JH signaling pathway. 
Studies on the fly Melinda pusilla have reported that the application of exogenous 
juvenile hormone can temporarily terminate diapause [46]. Diapause in C. pipiens 
adult stage is characterized by a pause in reproduction, such as stagnation of the 
ovaries and male accessory glands, as well as reduced mating activity. The cessation 
of JH production delays ovarian development, and increases stress resistance, fat, 
and sugar storage [47]. When C. pipiens females are held in diapause conditions for 
22 weeks, follicles gradually grow longer. When 21-day-old diapausing mosquitoes are 
moved to a long daylight of 16:8(L:H) at 26°C, juvenile hormone synthesis increases 
rapidly and peaks 5 days later, while follicles grow to a quiescent stage. Allatectomy of 
young diapausing females prevents follicle growth and blood feeding when diapause 
is terminated prematurely, demonstrating that the physiological events are associated 
with juvenile hormone biosynthesis [48].

During diapause, there are a lot of significant changes that occur in energy and 
metabolism due to the organism need to maintain life activities under extreme 
environmental conditions. Expression of the trehalase gene expression and enzyme 
activity of D. antiqua in summer- and winter diapause are lower at the initial phase 
but increase gradually and peak in the maintenance phase [49]. The contents of glyco-
gen and trehalose in E. civilis during diapause increase significantly with an increase 
in the diapause induction period.

7.2 Diapause-associated changes in genes

With the development of high-throughput sequencing technology, the sequenc-
ing and annotation of Drosophila melanogaster genome were first published in 2000 
[50]. However, not all Dipteran insects have been sequenced. To simplify the genome 
sequencing research strategy, transcriptome sequencing can be used to study insects 
with or without a reference genome available. Transcriptome sequencing technol-
ogy is rapid, efficient, and low-cost, and currently has been widely used in genetic 
research, which can carry out transcriptome analysis of a tissue or organelle in a more 
comprehensive way [51]. Transcriptomes would not only facilitate a better under-
standing of how individual genes have evolved in biological processes, but would also 
help to reflect what gene expression changes more precisely [52]. The transcriptome 
refers to the collection of all gene transcription products in a cell or tissue under 
certain state or physiological condition, including messenger RNA, ribosomal RNA, 
transport RNA, and non-coding RNA. Transcriptomics, as an important means to 
study cell function, can be used to investigate the amount of active gene expression at 
the RNA level. In recent years, with the development of second- and third-generation 
molecular sequencing technology, the single-cell genomics is advancing rapidly. 
Transcriptome based on whole-genome analysis represents the average level of all cell 
signals, ignoring the variation between cells [53]. Compared with traditional sequenc-
ing technology, single-cell technologies have the advantages of detecting the differ-
ences in gene expression among individual cells. At present, single-cell sequencing 
has been used in Drosophila and mosquitoes. New cell types, mechanisms of devel-
opment and aging, genes controlling neural regulation, and connection have been 
found in Drosophila by single-cell RNA sequencing analysis [54]. However, single-cell 
sequencing has not been done to study diapause of Dipteran insects.
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The use of RNA-Seq to determine genes with distinct levels of expression between 
diapause and non-diapause has been confined to flies, and Kyoto Encyclopedia of 
Genes (KEGG) analysis is performed to identify the pathways that are significantly 
enriched in diapause. A high-throughput RNA-Seq analysis from non-diapause and 
summer diapause pupae of D. antiqua revealed variation of cuticular and cytoskeletal 
components [55]. Significantly differentially regulated transcripts are identified 
in summer diapause (SD) and non-diapause (ND)-sensitive larvae of D. antiqua. 
Several functional terms related to lipid, carbohydrate, and energy metabolism, 
environmental adaption, immune response, and aging are enriched during the most 
sensitive SD induction period. There is much more variation of circadian clock genes 
in the period of ND than SD-destined larvae, which indicates that it is a key driver of 
integrating environmental signals to summer diapause [56]. The diapause-associated 
traits identified in S. mosellana appear to be involved in rapid spread and outbreaks. 
Transcriptomic sequencing performed on diapause and non-diapause larvae shows 
that various genes-coding metabolic enzymes are crucial for diapause [57]. The 
molecular mechanisms of obligatory diapause induction in B. minax are investigated 
by using high-throughput RNA-Seq data from second-instar larva, third-instar larva, 
and pupa stages. The cluster co-expression patterns of the differentially expressed 
genes reveal that significantly differentially expressed genes in the pupal stage are 
predicted to be related to diapause induction. All differentially expressed genes are 
investigated by GO functional and KEGG pathway analysis, and the results show 
that genes involved in processes such as 20-hydroxyecdysone (20E) biosynthesis, cell 
cycle, and metabolic pathways are likely related to obligatory diapause induction in B. 
minax [58]. The diapause-associated genes in E. civilis are related to be involved in the 
pathway of signal transduction, endocrine system, and carbohydrate metabolism by 
KEGG pathway enrichment analysis [59].

Based on transcriptome sequencing, some candidate diapause-related genes have 
been further studied in Diptera. For example, heat shock proteins (HSPs) have been 
studied in S. mosellana, Sarcophaga crassipalpis, and Rhagoletis mendax. Hsp90 is 
downregulated in S. crassipalpis diapause pupae and returns to pre-diapause level 
after diapause termination. The expression of Hsp90 is increased by heat shock 
or cold shock during diapause. It is showed that Hsp90 is regulated differently in 
diapause and diapause pupae response to heat injury [60]. DaTrypsin is a serine pro-
tease gene and is the first upregulated gene during winter and summer diapause. It 
may be involved in host immune defense or maintain the developmental of diapause 
pupae [61].

7.3 Diapause-associated changes in proteins

Proteins are complex molecules that play a central role in biological processes. 
Proteomics is used to elucidate the expression and function of protein on the basis of 
genome research. Changes in protein expression during diapause can be explored by 
two-dimensional gel electrophoresis and mass spectrometry. Isobaric tag for relative 
and absolute quantitation (iTRAQ ) can quantitatively analyze proteins from different 
sources in a single assay, and is used to study quantitative changes in the proteome 
by tandem mass spectrometry. Due to its high efficiency and sensitivity, iTRAQ has 
the potential to further advance the study of molecular mechanisms involved in 
diapause. Proteomic analysis of Diptera has also been reported. A proteomic approach 
was used to investigate the proteins extracted from larvae of S. mosellana at differ-
ent developmental stages, which include pre-diapause, over-summering diapause, 
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over-wintering diapause, and post-diapause. The results showed that two small Hsps 
play key roles in stress tolerance during diapause [62]. Proteins synthesized by pupal 
brains of the flesh fly S. crassipalpis were examined during diapause and non-diapause 
using pulse labeling and two-dimensional electrophoresis, and it was found that a 
cluster of about 15 brain proteins appears to be specific to diapausing pupae [63]. 
Ninety-five differently expressed proteins were identified in the diapause of E. civilis 
by using iTRAQ proteomics, and Hsps were found to be the key diapause-associated 
proteins. These proteins are mainly involved in material and energy metabolism [64]. 
Proteomic changes are studied in diapausing versus non-diapausing D. antiqua using 
two-dimensional differential gel electrophoresis, and it is found that some identified 
differential proteins may play an important role in physiological processes such as 
heat resistance, chromosome separation, and folic acid metabolism [65].

7.4 Diapause-associated changes in metabolite profiles

Metabolome refers to a collection of small molecular compounds that participate 
in the metabolism of an organism or cell with a relative molecular weight of less 
than 1000 DA in a specific physiological period. Metabolomics is a new discipline 
that simultaneously conducts qualitative and quantitative analysis of small molecule 
metabolite. It can be used to investigate how metabolites change with time when the 
organism is stimulated [66]. The cellular activities of living organisms are jointly 
undertaken by genes, proteins, and small molecule. The metabolic level can reflect 
the functional changes of macromolecules and amplify the small changes in gene 
expression. Various techniques are widely used to determine metabolic phenotypes, 
including liquid chromatography-mass spectrometry (LC-MS), gas chromatography-
mass spectrometry (GC/MS), and nuclear magnetic resonance (NMR). LC-MS 
analysis does not require sample volatileness and thermal stability, and is suitable 
for compounds with high boiling points, strong polarity, and poor thermal stability. 
Most metabolites involved in life science have these qualities, so LC-MS has broad 
application. In recent years, metabolomics has been applied in the area of medicine 
and microbiology, but there are still relatively few studies on insect diapause. The 
metabolic profiles of diapause and non-diapause B. minax pupae show that proline, 
trehalose, N-acetylglutamate, and alanine significantly contribute to cold tolerance 
during diapause [67]. In the metabolomics analysis of diapause and non-diapause 
pupae of E. civilis, L-proline, L-phenylalanine, L-histidine, and L-tyrosine are 
significantly different, which provides a foundation for mechanistic follow-up studies 
in insect diapause [68].

8. Conclusion

Knowledge of diapause in Diptera is essential for the development of effective 
pest management strategies and to increase the shelf-life of parasitoids used in the 
biological control industry. This chapter summarizes the recent progress on diapause 
of Diptera. We do believe that further studies should be investigated in the diapause 
of Diptera. Current research studies suggest that histone modification, DNA meth-
ylation, RNA methylation, and small noncoding RNAs all may be involved in the 
regulation of diapause in Diptera. However, it remains unclear whether they regulate 
the hormonal and physiological changes associated with diapause of Diptera; research 
has primarily focused on physiological changes associated with pre-diapause with 
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limited attention given to post-diapause. Studies showed that the indices of insects, 
such as oviposition quantity, oviposition duration, and life span, increased positively 
during post-diapause phase. The accumulation and consumption of energy storage 
substances in pre-diapause and diapause will affect the biological characteristics in 
post-diapause phase. Combined with biological characteristics in post-diapause, 
studies on development rate, feeding, individual size, diapause maintain environmen-
tal conditions, and nutritional supplements after the diapause are necessary. Existing 
studies on diapause in Diptera are mainly based on single omics, and studies using 
multi-omics are still vacant. Therefore, for a deeper understanding of the complex 
molecular landscape of diapause in Diptera, all the available omics data should be 
utilized in combination rather than treating them individually.
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