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Stability analysis of load
frequency control for power
systems with interval
time-varying delays

Yanyan Sun, Xiaoting Bo, Wenyong Duan* and Qun Lu

School of Electrical Engineering, Yancheng Institute of Technology, Yancheng, China

This study investigates the stability problem of load frequency control (LFC)

for power systems with interval time-varying delays. The two categories of

time delays, the lower bound being zero and non-zero, are considered. The

systems can be described as time delay systems of load disturbances. First,

an augmented Lyapunov–Krasovskii functional (LKF) is constructed. Some

delay-dependent nonintegral terms and single integral terms are additionally

introduced to make full use of the information on the system state variables

and the time-varying delays. Second, to overcome the problem of nonlinear

inequalities caused by the augmented LKF, the nonlinear inequalities are

converted into linear matrix inequalities (LMIs) by applying the new negative

definite inequality equivalence transformation lemma, which can be solved

easily by the MATLAB LMI toolbox. A new stability criterion is presented

by applying the Lyapunov stability theory. The stability criterion is less

conservative than some existing literature studies, which further improves the

stability margin for the power systems based on LFC. Finally, some numerical

examples are given to show the effectiveness of the proposedmethod and the

superiority of the results.

KEYWORDS

interval time-varying delays, load frequency control, Lyapunov stability theory, power systems,
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1 Introduction

Load frequency control (LFC) has been used in power systems for many years,
owing to its ability to be responsible for maintaining the grid frequency (an
important indicator of grid quality) at an ideal level after disturbances (Kundur, 1994;
Hassan, 2014; Aminov and Garievskii, 2019; Baykov et al., 2019; Ladygin et al., 2020;
Shakibjoo et al., 2020; Giudice et al., 2021). For the traditional LFC schemes, dedicated
independent communication networks are used to guarantee fast measurement and
control signal transmission (Bhowmik et al., 2004; Khalil and Swee, 2018), and the
transmission delays are very small and can usually be ignored. Nevertheless, with the
continuous expansion of modern power systems and the increasingly decentralized
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control services, the LFC scheme requires a large amount of data
and information to be exchanged over an open communication
network. The use of open communication networks can
introduce random delays and data packets into the LFC schemes
(Martin et al., 1995), thus leading to instability of the LFC power
system. Moreover, since the communication delays usually vary
throughout the interval, the ideal value of the lower bound may
not be equal to zero.Therefore, it is necessary to study the stability
of LFC power systems with interval time-varying delays due
to the existence of the non-zero lower bound for time-varying
delays. Significantly, there is a lack of literature on the non-zero
lower bound for the LFC power systems, which makes it crucial
to address this gap.

For the LFC power systems based on open communi-
cation networks, time-varying delays are unavoidable
in data transmission between the controller and the
plant (Jiang et al., 2011; Xu et al., 2017; Shen et al., 2020;
Feng et al., 2021). A number of scholars have studied the
communication time delay from the control center to the
governor (Ramakrishnan and Ray, 2015; Yang et al., 2017a;
Chen et al., 2020; Manikandan and Kokil, 2020), where the
LFC power systems based on open communication networks
can be modeled as time delay systems. In addition, in order
to ensure the operation stability and anti-interference ability
of the LFC power systems, many control methods have been
applied, such as the PI control design (Shangguan et al., 2021),
the decentralized control strategy (Shangguan et al., 2021), the
network predictive control method (Shangguan et al., 2022b),
and the H∞ control (Saravanakumar et al., 2018). In order to
maintain stable system operations, it is extremely important
to find the maximum allowable time delay of the LFC power
systems (Shangguan et al., 2022a). Both frequency and time
domain methods can be used to calculate the maximum
allowable time delay. The accuracy of the maximum allowable
delay can be calculated directly using the frequency domain
method by obtaining the critical eigenvalue and eigenroot from
the characteristic equation of the systems (Liu et al., 2008).
It is impossible to extend the frequency domain method to
the analysis and design of controllers for time delay systems.
Instead, the time domain method can use the Lyapunov
stability theory coupled with LMI to analyze system stability.
Meanwhile, it is also the main way to deal with the maximum
allowable delay (Yang et al., 2017b; Saravanakumar et al., 2018;
Xiong et al., 2018).The stability criterion derived by this method
is a sufficient condition and necessarily has certain conservatism.
Recently, how to reduce the conservatismof the stability criterion
has currently been the focus of a heated debate. One of the
critical factors is to construct suitable Lyapunov–Krasovskii
functionals (LKFs), such as LKFs with delayed decompositions
(Duan et al., 2019; Hua et al., 2021), LKFs with multiple integral
terms (Tian and Wang, 2020; Gholami, 2021), and LKFs with
some augmented vectors (Zhang et al., 2017; Duan et al., 2020).

Another critical factor is the technique for estimating the
upper bounds on the derivatives of LKFs, such as free-weighted
matrix zero equations (Wen et al., 2015), reciprocally convex
matrix inequalities (Shi et al., 2022; Zhong et al., 2022), and
integral inequalities including Jensen’s inequality (Ren and
Tian, 2022) and the B-L inequality (Seuret and Gouaisbaut, 
2015).

Recently, a new negative definite inequality equivalent
transformation lemma for the linear time delay systems has
been given in Oliveira and Souza (2020). The lemma can
increase the degree of freedom of matrix inequalities and
transform nonlinear inequalities into LMIs, which not only
reduces the conservatism of the stability criterion but also
reduces the complexity of solving them. Inspired by this, this
study considers the stability problem of the LFC power systems
with interval time-varying delays. The main contributions are as
follows:

• When constructing the LKF, delay-dependent Lyapunov
matrices are introduced into the nonintegral terms,
which contain more coupling information between time-
varying delay intervals and state variables than the LKFs
constructed in some literature studies (Chen et al., 2020;
Manikandan and Kokil, 2020; Shen et al., 2020). This can
further reduce the conservatism of the stability criterion
and improve the stability margin of the LFC power
systems.
• In addition, four additional integral terms, ∫st−h2x(θ)dθ,

∫t−h1hd
x (θ)dθ , ∫shdx(θ)dθ, and ∫hdt−h2x(θ)dθ, under two

different subintervals [h1,ht] and [ht ,h2] are augmented
to the single integral terms φ3(θ), φ4(θ), and φ5(θ),
which are exactly some necessary terms of the integral
inequality lemma so that the integral inequality lemma
can be fully used to estimate the upper bound of the
LKF derivatives. Thus, the augmented LKF can obtain
a larger stability margin than those in some literature
studies (Jiang et al., 2011; Ramakrishnan and Ray, 2015;
Yang et al., 2017a).
• To further illustrate the advantages of the proposedmethod,
the stability criterion of the non-zero lower bound of the
time-varying delay is also applied to the case that the
lower bound of the time-varying delay is zero. Finally, the
numerical simulation analysis and discussion demonstrate
the effectiveness of the proposed method.

This study is structured as follows. In Section 2, the system
model, research content, some hypothetical constraints, and
necessary lemmas are given. Some new delay-dependent stability
criteria, including theorems and corollaries, are derived in
Section 3. Some numerical simulation analyses and discussions
are provided in Section 4. The conclusion is provided in
Section 5.
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Notation:The n-dimensional Euclidean space is represented
by ℝn. All n×m real matrices make up the set ℝn×m.
The symmetric and symmetric positive definite matrices are
denoted as 𝕊n and 𝕊n+, respectively. The diagonal n-order
matrix with elements a1,a2,…,an is denoted by the notation
diag{a1,a2,…,an}. For P ∈ ℝ

n×n, PT stands for the transpose of
the matrix P. P > 0 means that P ∈ 𝕊n+. col{⋅} denotes a column
vector Sym{Ξ} = Ξ+ΞT .

2 Problem formulation

In this section, the PI controller-based time delay model
for the one-area LFC power system is presented. The basic
block diagram of the abovementioned power system is shown
in Figure 1. From the figure, it is obvious that e−sd is the time
delay in communication from the control center to the governor.
In addition to this, Δf is the deviation of frequency; ΔPd is the
deviation of the load; ΔPv is the governor valve position; ΔPm
is the turbine output; Tg is the governor time constant; D is
the damping coefficient of the generator; Tch is the turbine time
constant; ACE is the area control error; M is the moment of
inertia; and R is the speed droop.

According to the PI controller-based time delay block
diagram and literature (Xu et al., 2017), the state space equations
of the LFC power system are expressed as

{
̇x̃ (t) = Ãx̃ (t) + B̃u (t) + D̃ww (t) ,

ỹ (t) = C̃x̃ (t) .
(1)

The system parameters are shown as follows:

x̃T (t) = [Δf ΔPm ΔPv] ,

ỹ (t) = ACE,

ΔPc (t) = u (t) ,

ΔPd (t) = w (t) ,

Ã =
[[[[

[

− DM
1
M 0

0 − 1
Tch

1
Tch

− 1
RTg

0 − 1Tg

]]]]

]

,

B̃ =
[[[

[

0
0
1
Tg

]]]

]

,

D̃w =
[[

[

− 1M
0
0

]]

]

,

C̃ = [[

[

β
0
0

]]

]

T

.

As can be seen in Figure 1, the one-area LFC power system
does not have tie-line power exchange, so the ACE can be
described as

ACE = βΔf, (2)

in which, the frequency bias factor β > 0.

FIGURE 1
Basic diagram of the simplified one-area LFC power system.
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TheLFC is achieved by using the following PI controller with
ACE as the input:

u (t) = −KpACE−KI∫ACE, (3)

where KP and KI denote the controller gains.
In addition, it is also clear from Figure 1 that there is a

communication delay between the governor and the control
center. To ensure that h (t) is differentiable and bounded, the
non-negative constants h1, h2, and μ are given; the time-varying
networked delay ht ≜ h (t) satisfies the following condition:

0 ⩽ h1 < ht < h2, |ḣt| = |ḣ (t)| ⩽ μ,∀t ⩾ 0.

Defining matrices κ ≜ [
KP
KI
], f (t) ≜ [

ACE
∫ACE
]. Then, the PI-

type controller in one-area LFC power system (3) can be
rewritten as

u (t) = −κf(t− ht) . (4)

Redefining the state vector x̂ (t) ≜ [Δf ΔPm ΔPv ∫ACE]
T,

the PI-type control problem is converted to a static output
feedback control problem by adding (4) into (1).The closed-loop
LFC power system takes the following forms:

{{{
{{{
{

̇x̂ (t) = Âx̂ (t) + Âdx̂(t− ht) + D̂ww (t) ,

ŷ (t) = Ĉx̂ (t) ,

x̂ (t) = ϕ (t) , t ∈ [−h2,0] ,

(5)

The system parameters are shown as follows:

Â =

[[[[[[[

[

− DM
1
M 0 0

0 − 1
Tch

1
Tch

0

− 1
RTg

0 − 1Tg
0

β 0 0 0

]]]]]]]

]

,

D̂w =
[[[[[

[

− 1M
0
0
0

]]]]]

]

,

Âd =
[[[[[[

[

0 0 0 0
0 0 0 0

−
Kpβ
Tg

0 0 −KI
Tg

0 0 0 0

]]]]]]

]

,

Ĉ =
[[[[

[

β 0
0 0
0 0
0 1

]]]]

]

T

.

Remark 1: for time-varying delay in power systems,
unknown external load disturbances can be described as current
and delay state vectors in the case of nonlinear disturbances
(Ramakrishnan and Ray, 2015):

D̂ww (t) = η(x (t) ,x(hd)) (6)

satisfying the constraint condition of the following
inequality:

‖η (⋅)‖ ⩽ ϖ‖x (t)‖ + ν‖x(hd)‖ (7)

with the known non-negative scalars ϖ and ν. In a more
general way, it is described as follows:

η(⋅)Tη (⋅) ⩽ ϖ2xT (t)ETEx (t) + ν2xT (hd)N
TNx(hd) , (8)

where hd = t− ht , and E andN are known constant matrices with
appropriate dimensions. To measure load disturbances in the
power systems, non-negative scalars ϖ and ν along with matrices
E and N can be used.

Lemma 1 (Seuret and Gouaisbaut, 2015). For any Q ∈ 𝕊n+
and g: [m,n] → ℝn , the following integral inequality holds

∫
n

m
̇gT (θ)Q ̇g (θ)dθ ≥ 1

n−m
ϱTQ̄ϱ,

where Q̄ = diag {Q, 3Q, 5Q}, ϱ = col{ϱ1,ϱ2,ϱ3} with
ϱ1 = g(n) − g(m),

ϱ2 = g (n) + g (m) −
2

n−m
∫
n

m
g (θ)dθ,

ϱ3 = ϱ1 −
6

n−m
∫
n

m
g (θ)dθ+ 12

(n−m)2
∫
n

m
(n− θ)g (θ)dθ.

Lemma 2 (Zhang et al., 2017). For the given scalar (0,1] ,
Λ1, Λ2 ∈ 𝕊m+ and ϑ1, ϑ2 ∈ ℝm. If there exist ς1, ς2 ∈ 𝕊m and
Υ1, Υ2 ∈ ℝm×m, then

[
Λ1 − ς1 Υ1
✶ Λ2

] ≥ 0,[
Λ1 Υ2
✶ Λ2 − ς2

] ≥ 0.

The following inequality holds

1
α
ϑT1Λ1ϑ1 +

1
1− α

ϑT2Λ2ϑ2 ≥ 2ϑT1 [αΥ1 + (1− α)Υ2]ϑ2

+ ϑT1 [Λ1 + (1− α)ς1]ϑ1
+ ϑT2 (Λ2 + ας2)ϑ2.

Lemma 3 (Oliveira and Souza, 2020).LetP2, P1, P0 ∈ 𝕊p and
ζ ∈ ℝp. Then, the inequality

ζT (ht
2P2 + htP1 + P0)ζ < 0

holds for all ht ∈ [h1,h2], if and only if there exist the matrix
M ∈ 𝕊p+ and skew-symmetric matrix N ∈ ℝk×k; then

[P0
1
2P1

✶ P2
]−[

C
J
]
T

[
−M N
✶ M
][

C
J
] < 0,

where C = [(h21/2)I 0] and J = [(h21/2)I −I], and
h21 = h2 − h1.
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3 Main results

In this section, for the one-area LFC power system with an
interval time-varying delay, two cases of lower bounds h1 > 0 and
h1 = 0 for ht are discussed, respectively, and the stability criterion
satisfying system (5) is derived.

The following notations are used in the derivation to make
the representation of vectors and matrices simpler.

h12 = h1 + h2, ḣ1t = 1− ḣt,

Z1t = (ht − h1)Z11 +Z12,Z2t = (h2 − ht)Z21 +Z22,

ζ (t) = col{x (t) ,x (t− h1) ,x(hd) ,x (t− h2) ,ρ1t,ρ2t,ρ3t,ρ4t,

ρ5t,ρ6t, ẋ (t− h1) , ẋ(hd) , ẋ (t− h2) ,w (t)} ,

ρ1t = ∫
hd

t−h2

x (θ)
h2 − ht

dθ,ρ2t = ∫
t−ht

t−h2

(t− ht − θ)x (θ)

(h2 − ht)
2 dθ,

ρ3t = ∫
t−h1

hd

x (θ)
ht − h1

dθ,ρ4t = ∫
t−h1

hd

(t− h1 − θ)x (θ)
(ht − h1)

2 dθ,

ρ5t = ∫
t

t−h1

x (θ)
h1

dθ,ρ6t = ∫
t

t−h1

(t− θ)x (θ)
h21

dθ,

φ0t = col{x (t) , x (t− h1) , x(hd) , x (t− h2)} ,

φ1t = col{x (t) , x (t− h1) , x(hd) , ∫
t−h1

hd
x (θ)dθ},

φ2t = col{x (t) ,x(hd) , x (t− h2) , ∫
hd

t−h2
x (θ)dθ},

φ3 (θ) = col{ẋ (θ) , x (θ) , φ0t, ∫
t−h1

θ
x (θ)dθ, ∫

θ

hd
x (θ)dθ,

∫
hd

t−h2
x (θ)dθ},

φ4 (θ) = col{ẋ (θ) , x (θ) , φ0t, ∫
hd

θ
x (θ)dθ, ∫

t−h1

hd
x (θ)dθ ,

∫
θ

t−h2
x (θ)dθ},

φ5 (θ) = col{ẋ (θ) , x (θ) , φ0t, ∫
θ

t−h1
x (θ)dθ, ∫

t−h1

hd
x (θ)dθ ,

∫
hd

t−h2
x (θ)dθ}.

3.1 Case 1: h1 > 0

Theorem 1. System (5) is stable in the presence of scalars μ,
h1, and h2 if there exist matrices Zi1 ∈ 𝕊

4n,Zi2 ∈ 𝕊
4n
+ ,Xi ∈ 𝕊

3n,Yi ∈
ℝ3n×3n,Di ∈ 𝕊

14n
+ ,Qj ∈ 𝕊

9n
+ ,Hj ∈ 𝕊

n
+, (i = 1,2; j = 1,2,3) and skew-

symmetric matrices Gi ∈ ℝ
14n×14n for (i = 1,2) such that the

following matrix inequalities hold for 0 < h1 < ht ⩽ h2 and
ḣt

Δ
=μi ∈ {−μ,μ}.

h21Z11 +Z12 > 0,h21Z21 +Z22 > 0, (9)

[
H̄1 −X1 Y1
✶ H̄2

] ≥ 0,[
H̄1 Y2
✶ H̄2 −X2

] ≥ 0, (10)

[Ω0 (μi)
1
2Ω1 (μi)

✶ Ω2 (μi)
] −[

C
J
]
T

[
−Di Gi
✶ Di
][

C
J
] < 0, (11)

where

Hj = diag{Hj, 3Hj, 5Hj} , j = 1, 2, 3,

C = [(h21/2) I 0] , J = [(h21/2) I −I] ,

Ω0 (ḣt) = Sym{D
T
1 (−h1Z11 +Z12)c11 +D

T
2 (h2Z21 +Z22)c21

+DT
3Q1c70 +D

T
4Q2c80 +D

T
5Q3d20} + ḣtc

T
11Z11c11

− ḣtc
T
21Z21c21 + c

T
31Q1c31 − ḣ1tc

T
41Q1c41 + ḣ1tc

T
51Q2c51

− cT61Q2c61 + cT91Q3c91 − dT11Q3d11 + h21h2τT11H1τ11
− h21h1τT13H2τ13 + h21c

T
0H3c0 + (h1/h21)ΓT1X1Γ1

− ΓT1 H̄1Γ1 − Γ
T
2 H̄2Γ2 − Γ

T
3 H̄3Γ3 − (h2/h21)Γ

T
2X2Γ2

+ h21h12ḣ1tτT12 (H2 −H1)τ12
− Sym{(h2/h21)ΓT1Y1Γ2}

+ Sym{(h1/h21)ΓT1Y2Γ2} + λϖ2τT1E
TEτ1

+ λν2τT2N
TNτ2,

Ω1 (ḣt) = Sym{DT
1Z11c11 −DT

1 (h1Z11 +Z12)c12 −DT
2Z21c21

+DT
2 (h2Z21 +Z22)c22 +DT

3Q1c71 +DT
4Q2c81

+ḣ (t)cT11Z11c12 − ḣtcT21Z21c22 + cT31Q1c32 − cT61Q2c61
−ḣ1tcT41Q1c42 + ḣ1tcT51Q2c52 + cT91Q3c92 +DT

5Q3d21
−dT11Q3d12} − h21ḣ1tτT12 (H2 −H1)τ12 − (1/h21)ΓT1X1Γ1
+ (1/h21)ΓT2X2Γ2 + Sym{(1/h21)ΓT1 (Y1 −Y2)Γ2} ,

Ω2 (ḣt) = Sym{DT
1Z11c12 −DT

2Z21c22 +DT
3Q1c72 +DT

4Q2c82}

+ ḣtcT12Z11c12 − ḣtcT22Z21c22 + cT32Q1c32 − cT62Q2c62
− ḣ1tcT42Q1c42 + ḣ1tcT52Q2c52 + cT92Q3c92 − dT12Q3d12

with

τi = [0n×(i−1)n I 0n×(14−i)n] , i = 1,2,…,14,

Δ = τ0 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0] ,

c0 = Âτ1 + Âdτ3 + D̂wτ14,

c11 = col{τ1,τ2,τ3,−h1τ7} ,c12 = col{Δ,Δ,Δ,−τ7} ,

c21 = col{τ1,τ3,τ4,h5τ5} ,c22 = col{Δ,Δ,Δ,−τ5} ,

c31 = col{τ11,τ2,τ1,τ2,τ3,τ4,Δ,−h1τ7,h2τ5} ,

c32 = col{Δ,Δ,Δ,Δ,Δ,Δ,Δ,τ7,−τ5} ,

c41 = col{τ12,τ3,τ1,τ2,τ3,τ4,−h1τ7,Δ,h2τ5} ,

c42 = col{Δ,Δ,Δ,Δ,Δ,Δ,τ7,Δ,−τ5} ,

c51 = col{τ12,τ3,τ1,τ2,τ3,τ4,Δ,−h1τ7,h2τ5} ,

c52 = col{Δ,Δ,Δ,Δ,Δ,Δ,Δ,τ7,−τ5} ,

c61 = col{τ13,τ4,τ1,τ2,τ3,τ4,h2τ5,−h1τ7,Δ} ,

c62 = col{Δ,Δ,Δ,Δ,Δ,Δ,−τ5,τ7,Δ} ,

c70 = col{τ2 − τ3,−h1τ7,−h1τ1,−h1τ2,−h1τ3,−h1τ4,

h21 (τ7 − τ8) ,h
2
1τ8,−h1h2τ5} ,
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c71 = col{Δ,τ7,τ1,τ2,τ3,τ4,2h1 (τ8 − τ7) ,−2h1τ8, (h1 + h2)τ5} ,

c72 = col{Δ,Δ,Δ,Δ,Δ,Δ,τ7 − τ8,τ8,−τ5} ,

c80 = col{τ3 − τ4,h2τ5,h2τ1,h2τ2,h2τ3,h2τ4,h
2
2 (τ5 − τ6) ,

−h1h2τ7,h22τ6} ,

c81 = col{Δ,−τ5,−τ1,−τ2,−τ3,−τ4,2h2 (τ6 − τ5) , (h1 + h2)τ7,

−2h2τ6} ,

c82 = col{Δ,Δ,Δ,Δ,Δ,Δ,τ5 − τ6,−τ7,τ6} ,

c91 = col{c0,τ1,τ1,τ2,τ3,τ4,h1τ9,−h1τ7,h2τ5} ,

c92 = col{Δ,Δ,Δ,Δ,Δ,Δ,Δ,τ7,−τ5} ,

d11 = col{τ11,τ2,τ1,τ2,τ3,τ4,Δ,−h1τ7,h2τ5} ,

d12 = col{Δ,Δ,Δ,Δ,Δ,Δ,Δ,τ7,−τ5} ,

d20 = col{τ1 − τ2,h1τ9,h1τ1,h1τ2,h1τ3,h1τ4,h21τ10,−h
2
1τ7,

h1h2τ5} ,

d21 = col{Δ,Δ,Δ,Δ,Δ,Δ,Δ,h1τ7,−h1τ5} ,

Γ1 = col{τ3 − τ4,τ3 + τ4 − 2τ5,τ3 − τ4 − 6τ5 + 12τ6} ,

Γ2 = col{τ2 − τ3,τ2 + τ3 − 2τ7,τ2 − τ3 − 6τ7 + 12τ8} ,

Γ3 = col{τ1 − τ2,τ1 + τ2 − 2τ9,τ1 − τ2 − 6τ9 + 12τ10} ,

D1 = col{c0,τ11, ḣ1tτ12,τ2 − ḣ1tτ3} ,

D2 = col{c0, ḣ1tτ12,τ13, ḣ1tτ3 − τ4} ,

D3 = col{Δ,Δ,c0,τ11, ḣ1tτ12,τ13,τ2,−ḣ1tτ3, ḣ1tτ3 − τ4} ,

D4 = col{Δ,Δ,c0,τ11, ḣ1tτ12,τ13, ḣ1tτ3,τ2 − ḣ1tτ3,−τ4} ,

D5 = col{Δ,Δ,c0,τ11, ḣ1tτ12,τ13,−τ2,τ2 − ḣ1tτ3, ḣ1tτ3 − τ4} .

Proof: let us consider the LKF having integrable terms, where

V =
3

∑
u=1

Vu (12)

with

V1 = φT1tZ1tφ1t +φ
T
2tZ2tφ2t,

V2 = ∫
t−h1

hd
φT3 (θ)Q1φ3 (θ)dθ

+∫
hd

t−h2
φT4 (θ)Q2φ4 (θ)dθ

+∫
t

t−h1
φT5 (θ)Q3φ5 (θ)dθ,

V3 = h21∫
t−h1

hd
(h12 − t+ θ) ẋ

T (θ)H1ẋ (θ)dθ

+ h21∫
hd

t−h2
(h12 − t+ θ) ẋT (θ)H2ẋ (θ)dθ

+ h1∫
t

t−h1
(h1 − t+ θ) ẋT (θ)H3ẋ (θ)dθ.

Zi (t) , (i = 1,2) are affine functions in h(t) ∈ [h1,h2]. By
applying Zi2 > 0,h21Zi1 +Zi2 > 0, we can ensure the LKF V(t)
positive definite value. Now, differentiating V(t), it gives

V̇1 = φ
T
1tŻ1tφ1t + 2φ̇

T
1tZ1tφ1t +φ

T
2tŻ2tφ2t + 2φ̇

T
2tZ2tφ2t, (13)

V̇2 = φ
T
3 (t− h1)Q1φ3 (t− h1) − ḣ1tφ

T
3 (hd)Q1φ3 (hd)

+ 2∫
t−h1

hd
φT3 (θ)dθQ1

∂
∂t
φ3 (θ) + ḣ1tφ

T
4 (hd)Q2φ4 (hd)

−φT4 (t− h2)Q2φ4 (t− h2) + 2∫
hd

t−h2
φT4 (θ)dθQ2

∂
∂t
φ4 (θ)

+φT5 (t)Q3φ5 (t) −φ
T
5 (t− h1)Q3φ5 (t− h1)

+ 2∫
t

t−h1
φT5 (θ)dθQ3

∂
∂t
φ5 (θ) , (14)

V̇3 = h21ḣ1t (h12 − ht) ẋ
T (hd) (H2 −H1) ẋ(hd)

+ h21h2ẋ
T (t− h1)H1ẋ (t− h1)

− h21∫
t−h1

hd
ẋT (θ)H1ẋ (θ)dθ

− h21h1ẋT (t− h2)H2ẋ (t− h2)

− h21∫
hd

t−h2
ẋT (θ)H2ẋ (θ)dθ

+ h21ẋ
T (t)H3ẋ (t) − h1∫

t

t−h1
ẋT (θ)H3ẋ (θ)dθ,

where

φ̇T1t = ζ
T (t)DT

1 , φ̇
T
2t = ζ

T (t)DT
2 ,

φ3 (hd) = (htc42 + c41)ζ (t) ,

φ3 (t− h1) = (htc32 + c31)ζ (t) ,

φ4 (t− h2) = (htc62 + c61)ζ (t) ,

φ4 (hd) = (htc52 + c51)ζ (t) ,

φ5 (t− h1) = (htd12 + d11)ζ (t) ,

φ5 (t) = (htc92 + c91)ζ (t) ,

∫
t−h1

hd
φT3 (θ)dθQ1

∂
∂t
φ3 (θ) = ζ

T (t)(cT70 + htc
T
71 + h

2
t c

T
72)

Q1D3ζ (t) ,

∫
hd

t−h2
φT4 (θ)dθQ2

∂
∂t
φ4 (θ) = ζ

T (t)(cT80 + htc
T
81 + h

2
t c

T
82)

Q2D4ζ (t) ,

∫
t

t−h1
φT5 (θ)dθQ3

∂
∂t
φ5 (θ) = ζ

T (t)(dT20 + htd
T
21)Q3D5ζ (t) .

Let α = (h2 − ht)/h21, α1 = 1/α, and α2 = 1/(1− α). According
to H1 > 0,H2 > 0 and H3 > 0, the integral terms in V3 can be
obtained by Lemma 1 as the following integral inequalities:

h21∫
hd

t−h2
ẋT (θ)H1ẋ (θ)dθ ⩾ α1ζ

T (t)ΓT1 H1Γ1ζ (t) , (15)

h21∫
t−h1

hd
ẋT (θ)H2ẋ (θ)dθ ⩾ α2ζ

T (t)ΓT2 H2Γ2ζ (t) , (16)

h1∫
t

t−h1
ẋT (θ)H3ẋ (θ)dθ ⩾ ζ

T (t)ΓT3 H3Γ3ζ (t) . (17)
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Inequalities (15) and (16) are transformed into the following
inequality by Lemma 2:

− α1ζT (t)ΓT1 H1Γ1ζ (t) − α2ζT (t)ΓT2 H2Γ2ζ (t)

⩽ −ζT (t){2ΓT1 [(1− α)Y2 + αY1]Γ2
+ ΓT1 [(1− α)X1 +H1]Γ1
+ ΓT2 [H2 + αX2]Γ2}ζ (t) . (18)

According to the nonlinear constraint (8), for any λ > 0, the
inequality holds

ληT (⋅)η (⋅) − λϖ2xT (t)ETEx (t) − λν2xT (hd)NTNx(hd) ⩽ 0.
(19)

Finally, from inequalities (13)–(19) in the derivation process,
we can summarize and simplify into the following form.

V̇ (t) ≤ ζT (t)[h2tΩ2 (ḣt) + htΩ1 (ḣt) +Ω0 (ḣt)]ζ (t) , (20)

whereΩ0(ḣt),Ω1(ḣt), andΩ2(ḣt) given in theorem 1, respectively.
According to Lemma 3, if and only if there exist Di ∈
𝕊14n+ and skew-symmetric matrices Gi ∈ ℝ14n×14n, the nonlinear
inequality (20) can be converted to the LMI (11) in theorem 1.
Also, then V̇ (t) < 0 holds. As a result, the Lyapunov stability
theorem can guarantee that system (5) is stable. It is sufficient
and complete and is thus proved.

Remark 2: Recently, an improved stability criterion has been
proposed in 2020 (Oliveira and Souza, 2020), where the LKF
was augmented by introducing augmented single integral terms
and delay-dependent nonintegral terms. Inspired by this, four
integral components are added and expanded to φ3 (θ), φ4 (θ),
and φ5 (θ) of V2 when constructing the LKF. Compared with the
literature Jiang et al. (2011), Ramakrishnan and Ray (2015), and
Yang et al. (2017a), the LKF proposed in this study includesmore
coupling information between time delays and state variables,
further reducing the conservatism of the stability criterion. In
addition, the augmented LKF must be combined with some
tight inequality techniques.Thenovel negative definite inequality
equivalence transformation lemma (Lemma 3) proposed in
Oliveira and Souza (2020) is used to convert inequality (20)
into LMI (11). It can be easily solved with the MATLAB LMI
toolbox.

Remark 3: In Jiang et al. (2011), Ramakrishnan and
Ray (2015), Yang et al. (2017a), and Feng et al. (2021), when
the lower bound of the time delay is zero, the stability of the
LFC power system has been studied and some stability criteria
have been obtained. However, in some cases, the time-varying
delay always varies within a non-zero interval. Therefore, the
stability criteria given in Jiang et al. (2011), Ramakrishnan
and Ray (2015), Yang et al. (2017a), and Feng et al. (2021 are
conservative because the importance of the non-zero lower
bound on the time-varying delay is ignored. Based on this,
theorem 1 provides a stability criterion in the case of h1 > 0.
Evidently, the stability criterion for h1 = 0 is a special case

of theorem 1, which can be given as a corollary in the next
subsection.

3.2 Case 2: h1 = 0

In this subsection, based on the analysis in remark 3, the
following corollary 1 can be obtained based on theorem 1 for the
case of h1 = 0.The changes in notations during the derivation are
as follows.

̂ζ (t) = col{x (t) ,x(hd) ,x (t− h2) ,ρ1t,ρ2t,ρ3t,ρ4t ,

w (t) , ẋ(hd) , ẋ (t− h2)} ,

τ̂i = [0n×(i−1)n I 0n×(10−i)n] , i = 1,2,…,10.

Corollary 1. System (5) is stable in the presence of scalars
μ and h2, if there exist matrices Zj1 ∈ 𝕊3n,Zj2 ∈ 𝕊3n+ ,Qj ∈ 𝕊8n+ ,Xj ∈
𝕊3n,Yj ∈ ℝ3n×3n,Hj ∈ 𝕊n+,Dj ∈ 𝕊10n+ and skew-symmetric matrices
Gj ∈ ℝ10n×10n, for j = 1,2, such that the LMIs (9–10) and the
following matrix inequalities hold for ht ∈ [0, h2] and ḣt

Δ
=μj ∈

{−μ,μ}

[
Ω̂0 (μj)

1
2 Ω̂1 (μj)

✶ Ω̂2 (μj)
]−[

C
J
]
T

[
−Dj Gj
✶ Dj
][

C
J
] < 0, (21)

where

Ω̂0 (ḣt) = Sym{D̂
T
1Z12 ̂c11 + D̂

T
2 (h2Z21 +Z22) ̂c21

+D̂T
3Q1 ̂c70 + D̂

T
4Q2 ̂c80}

+ ḣt ̂cT11Z11 ̂c11 − ḣt ̂cT21Z21 ̂c21 + ̂cT31Q1 ̂c31
− ḣ1t ̂cT41Q1 ̂c41 − ̂cT61Q2 ̂c61
+ ḣ1t ̂cT51Q2 ̂c51 + h22 ̂c

T
0H2 ̂c0 − Γ̂

T
2 (H̄2 +X2) Γ̂2

− Sym{Γ̂T1Y1Γ̂1}

+ h22ḣ1tτ̂
T
9 (H1 −H2) τ̂9 − Γ̂

T
1 H̄1Γ̂1

+ λε2τ̂T1E
TEτ̂1 + λθ2τ̂T2F

TFτ̂2,

Ω̂1 (ḣt) = Sym{D̂
T
1Z11 ̂c11 + D̂

T
1Z12 ̂c12

+ D̂T
2 (h2Z21 +Z22) ̂c22 − D̂

T
2Z21 ̂c21

+ D̂T
3Q1 ̂c71 + D̂

T
4Q2 ̂c81 + ḣt ̂cT11Z11 ̂c12

− ḣt ̂cT21Z21 ̂c22 + ̂cT31Q1 ̂c32
− ḣ1t ̂cT41Q1 ̂c42 + ḣ1t ̂cT51Q2 ̂c52
− ̂cT61Q2 ̂c62} − ḣ1th2τ̂

T
9 (H1 −H2) τ̂9

− 1
h2

Γ̂T1X1Γ̂1 +
1
h2

Γ̂T2X2Γ̂2

+ Sym{ 1
h2

Γ̂T1 (Y1 −Y2) Γ̂2},

Ω̂2 (ḣt) = Sym{D̂
T
1Z11 ̂c12 − D̂

T
2Z21 ̂c22 + D̂

T
3Q1 ̂c72

+D̂T
4Q2 ̂c82}

+ ḣt ̂cT12Z11 ̂c12 − ḣ1t ̂cT42Q1 ̂c42 + ̂cT32Q1 ̂c32
− ḣt ̂cT22Z21 ̂c22
+ ḣ1t ̂c

T
52Q2 ̂c52 − ̂c

T
62Q2 ̂c62
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with

Δ̂ = τ̂0 = [0 0 0 0 0 0 0 0 0 0] ,

̂c0 = Âτ̂1 + Âdτ̂2 + D̂wτ̂8,

̂c11 = col{τ̂1, τ̂2, Δ̂} , ̂c12 = col{Δ̂, Δ̂, τ̂6} ,

̂c21 = col{τ̂2, τ̂3, h2τ̂4} , ̂c22 = col{Δ̂, Δ̂,−τ̂4} ,

̂c31 = col{ ̂c0, τ̂1, τ̂1, τ̂2, τ̂3, Δ̂, Δ̂, h2τ̂4} ,

̂c32 = col{Δ̂, Δ̂, Δ̂, Δ̂, Δ̂, Δ̂, τ̂6,−τ̂4} ,

̂c41 = col{τ̂9, τ̂2, τ̂1, τ̂2, τ̂3, Δ̂, Δ̂, h2τ̂4} ,

̂c42 = col{Δ̂, Δ̂, Δ̂, Δ̂, Δ̂, τ̂6, Δ̂,−τ̂4} ,

̂c51 = col{τ̂9, τ̂2, τ̂1, τ̂2, τ̂3, Δ̂, Δ̂,h2τ̂4} ,

̂c52 = col{Δ̂, Δ̂, Δ̂, Δ̂, Δ̂, Δ̂, τ̂6,−τ̂4} ,

̂c61 = col{τ̂10, τ̂3, τ̂1, τ̂2, τ̂3,h2τ̂4, Δ̂, Δ̂} ,

̂c62 = col{Δ̂, Δ̂, Δ̂, Δ̂, Δ̂,−τ̂4, τ̂6, Δ̂} ,

̂c70 = col{τ̂1 − τ̂2, Δ̂, Δ̂, Δ̂, Δ̂, Δ̂, Δ̂, Δ̂} ,

̂c71 = col{Δ̂, τ̂6, τ̂1, τ̂2, τ̂3, Δ̂, Δ̂,h2τ̂4} ,

̂c72 = col{Δ̂, Δ̂, Δ̂, Δ̂, Δ̂, τ̂6 − τ̂7, τ̂7,−τ̂4} ,

̂c80 = col{τ̂2 − τ̂3, h2τ̂4,h2τ̂1, h2τ̂2, h2τ̂3,h22 (τ̂4 − τ̂5) , Δ̂,

h22τ̂5} ,

̂c81 = col{Δ̂,−τ̂4,−τ̂1,−τ̂2, −τ̂3, 2h2τ̂5 − 2h2τ̂4,h2τ̂6,

−2h2τ̂5} ,

̂c82 = col{Δ̂, Δ̂, Δ̂, Δ̂, Δ̂, τ̂4 − τ̂5,−τ̂6, τ̂5} ,

Γ̂1 = col{τ̂2 − τ̂3, τ̂2 + τ̂3 − 2τ̂4, τ̂2 − τ̂3 − 6τ̂4 + 12τ̂5} ,

Γ̂2 = col{τ̂1 − τ̂2, τ̂1 + τ̂2 − 2τ̂6, τ̂1 − τ̂2 − 6τ̂6 + 12τ̂7} ,

D̂1 = col{ ̂c0, ḣ1tτ̂9, τ̂1 − ḣ1tτ̂2} ,

D̂2 = col{ḣ1tτ̂9, τ̂10, ḣ1tτ̂2 − τ̂3} ,

D̂3 = col{Δ̂, Δ̂, ̂c0, ḣ1tτ̂9, τ̂10, τ̂1,−ḣ1tτ̂2, ḣ1tτ̂2 − τ̂3} ,

D̂4 = col{Δ̂, Δ̂, ̂c0, ḣ1tτ̂9, τ̂10, ḣ1tτ̂2, τ̂1 − ḣ1tτ̂2,−τ̂3} .

Proof: for h1 = 0, the LKF (12) is reduced to the following
forms:

V̂1 = φ̂
T
1tZ1tφ̂1t + φ̂

T
2tZ2tφ̂2t,

V̂2 = ∫
t

hd
φ̂T3 (θ)Q1φ̂3 (θ)dθ

+∫
hd

t−h2
φ̂T4 (θ)Q2φ̂4 (θ)dθ,

V̂3 = h2∫
hd

t−h2
(h2 − t+ θ) ẋT (θ)H1ẋ (θ)dθ

+ h2∫
t

hd
(h2 − t+ θ) ẋT (θ)H2ẋ (θ)dθ,

where

φ̂0t = col{x (t) , x(hd) , x (t− h2)} ,

φ̂1t = col{x (t) , x(hd) , ∫
t

hd
x (θ)dθ},

φ̂2t = col{x(hd) , x (t− h2) , ∫
hd

t−h2
x (θ)dθ},

φ̂3 (θ) = col{ẋ (θ) , x (θ) , φ̂0t, ∫
t

θ
x (θ)dθ, ∫

θ

hd
x (θ)dθ,

∫
hd

t−h2
x (θ)dθ},

φ̂4 (θ) = col{ẋ (θ) , x (θ) , φ̂0t, ∫
hd

θ
x (θ)dθ, ∫

t

hd
x (θ)dθ,

∫
θ

t−h2
x (θ)dθ}.

For simplicity, the rest of the proof is omitted as it is similar
to the proof of theorem 1. It is sufficient and complete and is thus
proved.

4 Case studies

This section illustrates the effectiveness of the stability
criterion for the one-area LFC system proposed in the study. By
solving the LMIs in theorem 1 and corollary 1 via the MATLAB
LMI toolbox application, the maximum admissible delay upper
bound (MADUB) for various KP and KI can be obtained. In
Table 1, the one-area LFC power system parameters are given
as those in Jiang et al. (2011), Ramakrishnan and Ray (2015),
Yang et al. (2017a), and Feng et al. (2021).

4.1 MADUBs for h1 = 0

Based on the PI controller, the MADUBs to guarantee
the stable operation of the one-area LFC power system
can be calculated by solving the LMIs in corollary 1. For
load disturbances, the parameters E = F = 0.1I4, ɛ = 0, and
θ = 0 are set. For the given various control gains of KP
and KI , Table 2 lists MADUBs with μ = 0, and Table 3 lists
MADUBs with μ = 0.9. From Tables 2, 3, for fixed KI , MADUBs
increase with the increase of KP; for fixed KP, MADUBs
decrease with the increase of KI . For μ = 0, the MADUBs are
similar to those of Yang et al. (2017a) and Feng et al. (2021)
but larger than those of Jiang et al. (2011) and Ramakrishnan
and Ray (2015). However, for μ = 0.9, the MADUBs are larger
than those of Jiang et al. (2011), Ramakrishnan and Ray (2015),
Yang et al. (2017a), and Feng et al. (2021). In terms of reducing
conservatism, our stability criterion is evident under time-
varying delay. In addition, the stability criterion proposed in
theorem 1 can also solve the case of h1 > 0, which is ignored
in the literature (Jiang et al., 2011; Ramakrishnan and Ray, 2015;
Yang et al., 2017a; Feng et al., 2021).
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TABLE 1 System parameters.

Parameter Tg (s) Tch (s) R β M (s) D

Area 0.1 0.3 0.05 21 1.0 1.0

TABLE 2 MADUBs h2 for fixed μ = 0 and various KP and KI.

μ = 0

KP Method∖KI 0.2 0.4 0.6

0

Corollary 1 7.331 3.382 2.045
Feng et al. (2021) 7.33 3.38 2.03
Yang et al. (2017a) 7.34 3.39 2.05
Jiang et al. (2011) 6.69 3.12 1.91
Ramakrishnan and Ray (2015) 6.69 3.12 1.91

0.1

Corollary 1 7.79 3.61 2.193
Feng et al. (2021) 7.81 3.62 2.19
Yang et al. (2017a) 7.79 3.61 2.19
Jiang et al. (2011) 6.94 3.29 2.02
Ramakrishnan and Ray (2015) 6.94 3.29 2.02

4.2 MADUBs for h1 > 0

The MADUBs for fixed KP and KI and different μ are
given in Tables 4, 5. Table 4 lists the MADUBs with μ = 0,
h1 = 0.2/0.4/0.8, and different controller gains. Table 5 lists
the MADUBs with various μ, h1 = 0.2/0.4/0.8, and different
controller gains. From Tables 4, 5, the MADUBs increase with
the increase of h1. For fixed h1,KP, andKI , theMADUBs decrease
with the increase of μ. For fixed h1, μ, and KP, the MADUBs
decrease with the increase of KI . For fixed h1, μ, and KI , the
MADUBs increase with the increase of KP.

4.3 Simulation

MATLAB simulations about the one-area LFC power system
are run with a step load of 0.1pu at 1s. Some detailed simulation
conditions are shown as follows. The responses of the power

TABLE 3 MADUBs h2 for fixed μ = 0.9 and various KP and KI.

μ = 0.9

KP Method∖KI 0.2 0.4 0.6

0

Corollary 1 7.14 3.23 1.93
Feng et al. (2021) 7.12 3.20 1.91
Yang et al. (2017a) 6.43 2.91 1.71
Jiang et al. (2011) 6.25 2.85 1.68
Ramakrishnan and Ray (2015) 4.59 1.81 1.01

0.1

Corollary 1 7.15 3.26 2.01
Feng et al. (2021) 7.13 3.24 1.95
Yang et al. (2017a) 6.59 3.11 1.84
Jiang et al. (2011) 5.93 2.87 1.75
Ramakrishnan and Ray (2015) 4.67 1.85 1.05

TABLE 4 MADUBs h2 for μ = 0 and various h1 under theorem 1.

(KP,KI) ∖ h1 0.2 0.4 0.8 1 1.2

(0, 0.2) 7.331 7.332 7.332 7.332 7.332
(0, 0.4) 3.382 3.383 3.383 3.383 3.383
(0, 0.6) 2.045 2.046 2.046 2.046 2.046
(0.1, 0.2) 7.79 7.791 7.791 7.791 7.791
(0.1, 0.4) 3.61 3.611 3.611 3.611 3.611
(0.1, 0.6) 2.193 2.194 2.194 2.194 2.194

system withKP = 0 and variousKI and μ can be seen in Figure 2.
The responses of the power system with KP = 0.1 and various KI
and μ can be seen in Figure 3. The LFC power system is stable,
and it is clear that the LFC has succeeded in achieving its goals.

Figures:2:KP = 0 and various μ andKI

A.KI = 0.2, ht =
7.99
2
+ 6.39

2
sin( 0.4t

6.39
)

with 0.8 ⩽ ht ⩽ 7.19 and μ = 0.2;

B.KI = 0.4, ht = 2.03+ 1.23sin(
t

1.23
)

with 0.8 ⩽ ht ⩽ 3.26 and μ = 0.5;

C.KI = 0.6, ht =
2.35
2
+ 1.55

2
sin( 1.8t

1.55
)

with 0.4 ⩽ ht ⩽ 1.95 and μ = 0.9.

TABLE 5 MADUBs h2 for various μ > 0 and various h1 under theorem 1.

μ 0.2 0.5 0.9

(KP,KI) ∖ h1 0.2 0.4 0.8 0.2 0.4 0.8 0.2 0.4 0.8

(0, 0.2) 7.16 7.18 7.19 7.15 7.17 7.18 7.14 7.16 7.17
(0, 0.4) 3.24 3.26 3.27 3.23 3.25 3.26 3.22 3.24 3.25
(0, 0.6) 1.95 1.97 1.98 1.94 1.96 1.97 1.93 1.95 1.96
(0.1, 0.2) 7.17 7.19 7.20 7.16 7.18 7.19 7.15 7.17 7.18
(0.1, 0.4) 3.28 3.30 3.30 3.27 3.29 3.30 3.26 3.28 3.29
(0.1, 0.6) 1.99 1.99 1.99 1.98 1.99 1.99 1.97 1.99 1.99
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FIGURE 2
Frequency deviation and control error responses of the one-area LFC power system with KP = 0 and different KI.

FIGURE 3
Frequency deviation and control error responses of the one-area LFC power system with KP = 0.1 and different KI.
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Figures:3:KP = 0.1 and various μ andKI

A.KI = 0.2, ht = 4+ 3.2 sin(
0.8t
3.2
)

with 0.8 ⩽ ht ⩽ 7.20 and μ = 0.2;

B.KI = 0.4, ht =
4.1
2
+ 2.5

2
sin( t

2.5
)

with 0.8 ⩽ ht ⩽ 3.30 and μ = 0.5;

C.KI = 0.6, ht =
2.39
2
+ 1.59

2
sin ( 1.8t

1.59
)

with 0.4 ⩽ ht ⩽ 1.99 and μ = 0.9.

The curves A, B, and C in Figures 2, 3 correspond to
simulation conditions A, B, and C, respectively. The curves tend
to be in a steady state as time increases. This proves that the
maximum allowable delay range obtained from theorem 1 is
within the actual range.

5 Conclusion

The stability analysis of the LFC power systems with interval
time-varying delays is investigated in this study. The two cases
of the time delay lower bound h1 = 0 and h1 > 0 are considered.
An improved stability criterion is given based on the Lyapunov
stability theory. First, for load disturbances, time delay linear
systems are used to characterize one-area LFC power systems.
Second, when constructing the augmented LKF, the state and
time-varying delay information on the LFC power systems are
fully utilized. The LKF contains the delay-dependent matrices
and four single integral terms.Third, by applying the equivalence
transformation lemma 3 for quadratic matrix functions, the
stability criterion can be described as the LMI. At last, the
efficiency of the method is demonstrated with a few examples.
The stability criteria in this study reduce the conservatism,
however increases the complexity of solving LMI. For the LFC
power system, the results obtained in this study can be expanded
to the multi-time delays and multi-areas. In Shi et al. (2022)
and Zhong et al. (2022), the sampling period and decentralized
LFC schemes are proposed, respectively, which can improve the
method in this study. It may be our future topics.
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