874 research outputs found

    Set voltage distribution stabilized by constructing an oxygen reservoir in resistive random access memory

    Get PDF
    In this letter, the instability mechanism of RRAM was investigated, and a technique was developed to stabilize the distribution of high resistance state (HRS) and better concentrate the SET voltage. In previous research, we found that an interface-type switching characteristic was observed on the I-V curve beneath the filament-type switching behavior, owing to the oxygen accumulation effect. In this letter, this interface-type switching characteristic is used to fit the natural distribution of HRS for an analysis of the instability mechanism. According to the results, the reason for the HRS distribution is the accumulation of extra oxygen ions which are left over from a lower degree of oxygen and oxygen vacancy recombination during the reset process. We propose a solution which creates an extra oxygen reservoir by changing the surface topography of the electrode to store the surplus oxygen ions from the reset process, eliminating the accumulation effect, and indeed improving stability. Please click Additional Files below to see the full abstract

    Optical Properties and Enhanced Photothermal Conversion Efficiency of SiO2/A-Dlc Selective Absorber Films for A Solar Energy Collector Fabricated by Unbalance Sputter

    Get PDF
    AbstractSolar energy could become the most attractive alternative energy source. In this study we test an attractive new candidate material for solar energy collectors. It can be found that the higher the gas pressure is, the higher the sp2/sp3 area ratio, the greater the sputtering rate and the greater the optical absorption. The photothermal conversion efficiency of a SiO2 coating on the amorphous diamond-like carbon (a-DLC) selective absorber films deposited on the Cr/mirror like Al substrate is 93.2% as the film thickness of a SiO2 coating is 105nm. The coatings also increase the protective properties for a longer service life. This makes the SiO2 coated a-DLC film a promising new candidate material for solar selective absorber films. The SiO2/a-DLC selective absorber films also were deposited on the Al extrusion substrates

    Pressure tunable quantum anomalous Hall states in a topological antiferromagnet

    Full text link
    Mechanical modulation of the lattice parameter can modify the electronic structure and manipulate the magnetic coupling of a material without introducing impurities. Inspired by success in pressure-controlled magnetism, we investigate the effect of hydrostatic pressure on quantized Chern states in the antiferromagnetic topological insulator MnBi2Te4, using transport as a probe. We show that pressure can enhance the robustness of quantum anomalous Hall (QAH) phases that are otherwise delicate in 7SL MnBi2Te4 and in the spin-flop (SF) state of 8SL MnBi2Te4. We explain our findings using a coupled Dirac cone model of MnBi2Te4, which identifies stronger hybridization between van der Waals layers as the driver of topological states. We further demonstrate that moderate pressures readily available in laboratory systems can provide reversible control of magnetic and topological phases. Our results reveal a strong connection between the mechanical engineering of band topology and magnetism.Comment: 11 pages, 4 figure

    Reliability of flexible low temperature poly-silicon thin film transistor

    Get PDF
    This work reports the effect of mechanical stress-induced degradation in flexible low-temperature polycrystalline-silicon thin-film transistors. After 100,000 iterations of channel-width-direction mechanical compression at R=2mm, a significant shift of extracted threshold voltage and an abnormal hump at the subthreshold region were found. Simulation reveals that both the strongest mechanical stress and electrical field takes place at both sides of the channel edge, between the polycrystalline silicon and gate insulator. The gate insulator suffered from a serious mechanical stress and result in a defect generation in the gate insulator. The degradation of the threshold voltage shift and the abnormal hump can be ascribed to the electron trapping in these defects. In addition, this work introduced three methods to reduce the degradation cause by the mechanical stress, including the quality improvement of the gate insulator, organic trench structure and active layer with a wing structure. Please click Additional Files below to see the full abstract

    Adaptive Synaptic Memory via Lithium Ion Modulation in RRAM Devices

    Full text link
    Biologically plausible computing systems require fine- grain tuning of analog synaptic characteristics. In this study, lithium- doped silicate resistive random access memory with a titanium nitride (TiN) electrode mimicking biological synapses is demonstrated. Biological plausibility of this RRAM device is thought to occur due to the low ionization energy of lithium ions, which enables controllable forming and filamentary retraction spontaneously or under an applied voltage. The TiN electrode can effectively store lithium ions, a principle widely adopted from battery construction, and allows state- dependent decay to be reliably achieved. As a result, this device offers multi- bit functionality and synaptic plasticity for simulating various strengths in neuronal connections. Both short- term memory and long- term memory are emulated across dynamical timescales. Spike- timing- dependent plasticity and paired- pulse facilitation are also demonstrated. These mechanisms are capable of self- pruning to generate efficient neural networks. Time- dependent resistance decay is observed for different conductance values, which mimics both biological and artificial memory pruning and conforms to the trend of the biological brain that prunes weak synaptic connections. By faithfully emulating learning rules that exist in human’s higher cortical areas from STDP to synaptic pruning, the device has the capacity to drive forward the development of highly efficient neuromorphic computing systems.In this study, lithium- doped silicate resistive random access memory with a titanium nitride (TiN) electrode is shown to mimic biological synapses. The TiN electrode effectively stores lithium ions, a principle widely adopted from battery construction, and enables reliable state- dependent decay. This device offers multi- bit functionality and synaptic plasticity, short- term memory and long- term memory, spike- timing- dependent plasticity and paired- pulse facilitation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163426/3/smll202003964-sup-0001-SuppMat.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163426/2/smll202003964_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163426/1/smll202003964.pd

    Indigenous Case of Disseminated Histoplasmosis, Taiwan

    Get PDF
    We report the first indigenous case of disseminated histoplasmosis in Taiwan diagnosed by histopathology of bone marrow, microbiologic morphology, and PCR assay of the isolated fungus. This case suggests that histoplasmosis should be 1 of the differential diagnoses of opportunistic infections in immunocompromised patients in Taiwan

    Is the whole greater than the sum of its parts? De novo assembly strategies for bacterial genomes based on paired-end sequencing

    Get PDF
    Number of misassemblies for different assembly strategies. Number of misassemblies for the de novo assembly results for E. coli DH1 and S. Parasanguinis FW213 are shown together with their standard errors of the mean. Group A [PE] and Group A [SE] represent all reads assembled as paired-end reads and single end reads, respectively. Group A [PE + SE] represents all the non-overlapped paired-end reads assembled together with merged reads. Group M [PE] and Group M [SE] represent Group M reads assembled as paired-end reads and single end reads, respectively. The numbers of misassemblies fluctuate a lot when depths of read number are low and gradually decreases until they reach a steady number. The paired-end reads (Group A [PE] and Group M [PE]) in S. Parasanguinis FW213 gave the lowest number of misassemblies when depths of read number are high. (TIFF 669 kb

    Giant Hall Switching by Surface-State-Mediated Spin-Orbit Torque in a Hard Ferromagnetic Topological Insulator

    Full text link
    Topological insulators (TI) can apply highly efficient spin-orbit torque (SOT) and manipulate the magnetization with their unique topological surface states, and their magnetic counterparts, magnetic topological insulators (MTI) offer magnetization without shunting and are one of the highest in SOT efficiency. Here, we demonstrate efficient SOT switching of a hard MTI, V-doped (Bi,Sb)2Te3 (VBST) with a large coercive field that can prevent the influence of an external magnetic field and a small magnetization to minimize stray field. A giant switched anomalous Hall resistance of 9.2 kΩk\Omega is realized, among the largest of all SOT systems. The SOT switching current density can be reduced to 2.8×105A/cm22.8\times10^5 A/cm^2, and the switching ratio can be enhanced to 60%. Moreover, as the Fermi level is moved away from the Dirac point by both gate and composition tuning, VBST exhibits a transition from edge-state-mediated to surface-state-mediated transport, thus enhancing the SOT effective field to 1.56±0.12T/(106A/cm2)1.56\pm 0.12 T/ (10^6 A/cm^2) and the spin Hall angle to 23.2±1.823.2\pm 1.8 at 5 K. The findings establish VBST as an extraordinary candidate for energy-efficient magnetic memory devices

    The gains and losses of face in ongoing intercultural interaction: A case study of Chinese participant perspectives

    Get PDF
    Given the small number of existing studies of face in intercultural settings and the increasing attention given to participant perspectives in face research, this paper explores the gains and losses of face as perceived by Chinese government officials during a three-week delegation visit to the United States of America. These perspectives were obtained from the group’s spontaneous discussions during regular evening meetings when they reflected on the day’s events. Several key features emerged from the discussions. Firstly, face enhancement was a primary goal for the visit – enhancement of their own face as a delegation, of the face of the Ministry they belonged to, as well as the face of their American hosts. Secondly, the delegates attempted to manage these face goals strategically. Thirdly, they spoke of face as a volatile image that could rise and fall sharply and yet endured across incidents, days and weeks. The paper reports on and discusses these participant perspectives in the light of recent theorizing on face

    A Guided Mode Resonance Aptasensor for Thrombin Detection

    Get PDF
    Recent developments in aptamers have led to their widespread use in analytical and diagnostic applications, particularly for biosensing. Previous studies have combined aptamers as ligands with various sensors for numerous applications. However, merging the aptamer developments with guided mode resonance (GMR) devices has not been attempted. This study reports an aptasensor based home built GMR device. The 29-mer thrombin aptamer was immobilized on the surface of a GMR device as a recognizing ligand for thrombin detection. The sensitivity reported in this first trial study is 0.04 nm/μM for thrombin detection in the concentration range from 0.25 to 1 μM and the limit of detection (LOD) is 0.19 μM. Furthermore, the binding affinity constant (Ka) measured is in the range of 106 M−1. The investigation has demonstrated that such a GMR aptasensor has the required sensitivity for the real time, label-free, in situ detection of thrombin and provides kinetic information related to the binding
    corecore