203 research outputs found
MSSM Higgs-Boson Production at Hadron Colliders with Explicit CP Violation
Gluon fusion is the main production mechanism for Higgs bosons with masses up
to several hundred GeV in collisions at the CERN Large Hadron Collider. We
investigate the effects of the CP-violating phases on the fusion process
including both the sfermion-loop contributions and the one-loop induced
CP-violating scalar-pseudoscalar mixing in the minimal supersymmetric standard
model. With a universal trilinear parameter assumed, every physical observable
involves only the sum of the phases of the universal trilinear parameter
and the higgsino mass parameter . The phase affects the lightest
Higgs-boson production rate significantly through the neutral Higgs-boson
mixing and, for the masses around the lightest stop-pair threshold, it also
changes the production rate of the heavy Higgs bosons significantly through
both the stop and sbottom loops and the neutral Higgs-boson mixing.Comment: 28 pages, 8 figures. Some references and comments added. Typos
corrected. To appear in Phys. Rev.
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
Multiplicity dependence of inclusive J/psi production at midrapidity in pp collisions at root s=13 TeV
Measurements of the inclusive J/psi yield as a function of charged-particle pseudorapidity density dN(ch)/d eta in pp collisions at root s = 13 TeV with ALICE at the LHC are reported. The J/psi meson yield is measured at midrapidity (vertical bar y vertical bar <0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (vertical bar eta vertical bar <1) and at forward rapidity (-3.7 <eta <-1.7 and 2.8 <eta <5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/psi yield with normalized dN(ch)/d eta is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively. (C) 2020 European Organization for Nuclear Research. Published by Elsevier B.V.Peer reviewe
Elliptic flow of charged particles at midrapidity relative to the spectator plane in Pb–Pb and Xe–Xe collisions
Measurements of the elliptic flow coefficient relative to the collision plane defined by the spectator neutrons v2{ SP} in collisions of Pb ions at center-of-mass energy per nucleon–nucleon pair √ 2.76 TeV and Xe ions at √ sNN = sNN =5.44 TeV are reported. The results are presented for charged particles produced at midrapidity as a function of centrality and transverse momentum for the 5–70% and 0.2–6 GeV/c ranges, respectively. The ratio between v2{ SP} and the elliptic flow coefficient relative to the participant plane v2{4}, estimated using four-particle correlations, deviates by up to 20% from unity depending on centrality. This observation differs strongly from the magnitude of the corresponding eccentricity ratios predicted by the TRENTo and the elliptic power models of initial state fluctuations that are tuned to describe the participant plane anisotropies. The differences can be interpreted as a decorrelation of the neutron spectator plane and the reaction plane because of fragmentation of the remnants from the colliding nuclei, which points to an incompleteness of current models describing the initial state fluctuations. A significant transverse momentum dependence of the ratio v2{ SP}/v2{4} is observed in all but the most central collisions, which may help to understand whether momentum anisotropies at low and intermediate transverse momentum have a common origin in initial state f luctuations. The ratios of v2{ SP} and v2{4} to the corresponding initial state eccentricities for Xe–Xe and Pb–Pb collisions at similar initial entropy density show a difference of (7.0 ±0.9)%with an additional variation of +1.8% when including RHIC data in the TRENTo parameter extraction. These observations provide new experimental constraints for viscous effects in the hydrodynamic modeling of the expanding quark–gluon plasma produced in heavy-ion collisions at the LHC
First measurement of Ωc0 production in pp collisions at s=13 TeV
The inclusive production of the charm–strange baryon 0 c is measured for the first time via its hadronic √ decay into −π+ at midrapidity (|y| <0.5) in proton–proton (pp) collisions at the centre-of-mass energy s =13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 < pT < 12 GeV/c. The pT dependence of the 0 c-baryon production relative to the prompt D0-meson and to the prompt 0 c-baryon production is compared to various models that take different hadronisation mechanisms into consideration. In the measured pT interval, the ratio of the pT-integrated cross sections of 0 c and prompt + c baryons multiplied by the −π+ branching ratio is found to be larger by a factor of about 20 with a significance of about 4σ when compared to e+e− collisions
Synthetic and X-ray structural and reactivity studies of Cp*Ru IV complexes containing bidentate dithiocarbonate, xanthate, carbonate, and phosphinate ligands (Cp* = η5-C 5Me5)
10.1021/ic061781tInorganic Chemistry4641440-1450INOC
N,N,N ',N '-tetraalkylaminoazoxybenzene derivatives; Convenient synthesis and mechanistic study
N,N,N',N'-tetraalkyaminoazoxybenzene derivatives were conveniently prepared by the coupling of N,N-dialkylnitrosoaniline in the presence of acetone and KOH. The reaction mechanism was proposed and investigated, and the structure of compound 3b was also confirmed by single crystal X-ray diffractometry
Comparative proteomic profiling of human lung adenocarcinoma cells (CL 1-0) expressing miR-372
Lung cancer is a common malignancy and has a poor overall prognosis. Widespread metastasis is a common phenomenon in non-small cell lung cancer (NSCLC). It has been demonstrated that cancer relapse and survival can be predicted by the presence of a five-microRNA (miRNA) signature independent of stage or histologic type in NSCLC patients. Among the five miRNAs in the signature, miR-372 has been shown to play a significant role in metastasis and in the development of human testicular germ cell tumors. In addition, there is evidence that miR-372 posttranscriptionally downregulates large tumor suppressor, homolog 2 (Lats2), resulting in tumorigenesis and proliferation. To further investigate the cellular mechanisms involved in miR-372-induced silencing, we conducted a comparative proteomic analysis of NSCLC CL 10 cells expressing miRNA-372 and/or vector only by using two-dimensional gel electrophoresis (2DE), two-dimensional difference gel electrophoresis (2D-DIGE), and LC/MS/MS. Proteins identified as being up- or downregulated were further classified according to their biological functions. Many of the proteins identified in our study may be potential diagnostic biomarkers of NSCLC, particularly phosphorylated eIF4A-I
Synthetic, X-ray diffraction, electrochemical, and density functional theoretical studies of (indenyl)ruthenium complexes containing dithiolate ligands
10.1002/ejic.200700070European Journal of Inorganic Chemistry243827-3840EJIC
- …