224 research outputs found
Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at TeV
Inclusive transverse momentum spectra of primary charged particles in Pb-Pb
collisions at = 2.76 TeV have been measured by the ALICE
Collaboration at the LHC. The data are presented for central and peripheral
collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross
section. The measured charged particle spectra in and GeV/ are compared to the expectation in pp collisions at the same
, scaled by the number of underlying nucleon-nucleon
collisions. The comparison is expressed in terms of the nuclear modification
factor . The result indicates only weak medium effects ( 0.7) in peripheral collisions. In central collisions,
reaches a minimum of about 0.14 at -7GeV/ and increases
significantly at larger . The measured suppression of high- particles is stronger than that observed at lower collision energies,
indicating that a very dense medium is formed in central Pb-Pb collisions at
the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10,
published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98
Two-pion Bose-Einstein correlations in central Pb-Pb collisions at = 2.76 TeV
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb
collisions at TeV at the Large Hadron Collider is
presented. We observe a growing trend with energy now not only for the
longitudinal and the outward but also for the sideward pion source radius. The
pion homogeneity volume and the decoupling time are significantly larger than
those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/388
Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics
A detailed study is presented of the expected performance of the ATLAS
detector. The reconstruction of tracks, leptons, photons, missing energy and
jets is investigated, together with the performance of b-tagging and the
trigger. The physics potential for a variety of interesting physics processes,
within the Standard Model and beyond, is examined. The study comprises a series
of notes based on simulations of the detector and physics processes, with
particular emphasis given to the data expected from the first years of
operation of the LHC at CERN
High density of FOXP3-positive T cells infiltrating colorectal cancers with microsatellite instability
High-level microsatellite instability (MSI-H) in colorectal cancer accounts for about 12% of colorectal cancers and is typically associated with a dense infiltration with cytotoxic CD8-positive lymphocytes. The role of regulatory T cells that may interfere with the host's antitumoural immune response in MSI-H colorectal cancers has not been analysed yet. Using an antibody directed against the regulatory T-cell marker transcription factor forkhead box P3 (FOXP3), regulatory T cells were examined in 70 colorectal cancers with known MSI status (MSI-H, n=37; microsatellite stable, n=33). In MSI-H colorectal cancers, we found a significantly higher intraepithelial infiltration with FOXP3-positive cells (median: 8.5 cells per 0.25 mm2 vs 3.1 cells per 0.25 mm2 in microsatellite stable, P<0.001), and a significantly elevated ratio of intraepithelial to stromal infiltration (0.05 vs 0.01 in microsatellite stable, P<0.001). CD8-positive cell counts were related positively to the number of FOXP3-positive cells (Spearman's ρ=0.56 and 0.55, respectively). Our results show that the elevated number of CD8-positive lymphocytes found in MSI-H colorectal cancers is paralleled by an enhanced infiltration with CD8-negative FOXP3-positive cells. These data suggest that FOXP3-positive cells may play a role in the regulation of the immune response directed against MSI-H colorectal cancers at the primary tumour site
By Any Other Name: Heterologous Replacement of the Escherichia coli RNase P Protein Subunit Has In Vivo Fitness Consequences
Bacterial RNase P is an essential ribonucleoprotein composed of a catalytic RNA component (encoded by the rnpB gene) and an associated protein moiety (encoded by rnpA). We construct a system that allows for the deletion of the essential endogenous rnpA copy and for its simultaneous replacement by a heterologous version of the gene. Using growth rate as a proxy, we explore the effects on fitness of heterologous replacement by increasingly divergent versions of the RNase P protein. All of the heterologs tested complement the loss of the endogenous rnpA gene, suggesting that all existing bacterial versions of the rnpA sequence retain the elements required for functional interaction with the RNase P RNA. All replacements, however, exact a cost on organismal fitness, and particularly on the rate of growth acceleration, defined as the time required to reach maximal growth rate. Our data suggest that the similarity of the heterolog to the endogenous version — whether defined at the sequence, structure or codon usage level — does not predict the fitness costs of the replacement. The common assumption that sequence similarity predicts functional similarity requires experimental confirmation and may prove to be an oversimplification
Dibucaine Mitigates Spreading Depolarization in Human Neocortical Slices and Prevents Acute Dendritic Injury in the Ischemic Rodent Neocortex
Spreading depolarizations that occur in patients with malignant stroke, subarachnoid/intracranial hemorrhage, and traumatic brain injury are known to facilitate neuronal damage in metabolically compromised brain tissue. The dramatic failure of brain ion homeostasis caused by propagating spreading depolarizations results in neuronal and astroglial swelling. In essence, swelling is the initial response and a sign of the acute neuronal injury that follows if energy deprivation is maintained. Choosing spreading depolarizations as a target for therapeutic intervention, we have used human brain slices and in vivo real-time two-photon laser scanning microscopy in the mouse neocortex to study potentially useful therapeutics against spreading depolarization-induced injury.We have shown that anoxic or terminal depolarization, a spreading depolarization wave ignited in the ischemic core where neurons cannot repolarize, can be evoked in human slices from pediatric brains during simulated ischemia induced by oxygen/glucose deprivation or by exposure to ouabain. Changes in light transmittance (LT) tracked terminal depolarization in time and space. Though spreading depolarizations are notoriously difficult to block, terminal depolarization onset was delayed by dibucaine, a local amide anesthetic and sodium channel blocker. Remarkably, the occurrence of ouabain-induced terminal depolarization was delayed at a concentration of 1 µM that preserves synaptic function. Moreover, in vivo two-photon imaging in the penumbra revealed that, though spreading depolarizations did still occur, spreading depolarization-induced dendritic injury was inhibited by dibucaine administered intravenously at 2.5 mg/kg in a mouse stroke model.Dibucaine mitigated the effects of spreading depolarization at a concentration that could be well-tolerated therapeutically. Hence, dibucaine is a promising candidate to protect the brain from ischemic injury with an approach that does not rely on the complete abolishment of spreading depolarizations
Natural Regulatory T Cells in Malaria: Host or Parasite Allies?
Plasmodium falciparum malaria causes 500 million clinical cases with approximately one million deaths each year. After many years of exposure, individuals living in endemic areas develop a form of clinical immunity to disease known as premunition, which is characterised by low parasite burdens rather than sterilising immunity. The reason why malaria parasites persist under a state of premunition is unknown but it has been suggested that suppression of protective immunity might be a mechanism leading to parasite persistence. Although acquired immunity limits the clinical impact of infection and provides protection against parasite replication, experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to the aetiology of severe disease. Thus, an appropriate regulatory balance between protective immune responses and immune-mediated pathology is required for a favourable outcome of infection. As natural regulatory T (Treg) cells are identified as an immunosuppressive lineage able to modulate the magnitude of effector responses, several studies have investigated whether this cell population plays a role in balancing protective immunity and pathogenesis during malaria. The main findings to date are summarised in this review and the implication for the induction of pathogenesis and immunity to malaria is discussed
Regulation of IL-2 gene expression by Siva and FOXP3 in human T cells
<p>Abstract</p> <p>Background</p> <p>Severe autoinflammatory diseases are associated with mutations in the <it>Foxp3 </it>locus in both mice and humans. <it>Foxp3 </it>is required for the development, function, and maintenance of regulatory T cells (T<sub>regs</sub>), a subset of CD4 cells that suppress T cell activation and inflammatory processes. <it>Siva </it>is a pro-apoptotic gene that is expressed across a range of tissues, including CD4 T cells. Siva interacts with three tumor necrosis factor receptor (TNFR) family members that are constitutively expressed on T<sub>reg </sub>cells: CD27, GITR, and OX40.</p> <p>Results</p> <p>Here we report a biophysical interaction between FOXP3 and Siva. We mapped the interaction domains to Siva's C-terminus and to a central region of FOXP3. We showed that <it>Siva </it>repressed IL-2 induction by suppressing <it>IL-2 </it>promoter activity during T cell activation. Siva-1's repressive effect on <it>IL-2 </it>gene expression appears to be mediated by inhibition of NFkappaB, whereas FOXP3 repressed both NFkappaB and NFAT activity.</p> <p>Conclusions</p> <p>In summary, our data suggest that both <it>FOXP3 </it>and <it>Siva </it>function as negative regulators of IL-2 gene expression in T<sub>reg </sub>cells, via suppression of NFAT by <it>FOXP3 </it>and of NFkappaB by both <it>FOXP3 </it>and <it>Siva</it>. Our work contributes evidence for <it>Siva's </it>role as a T cell signalling mediator in addition to its known pro-apoptotic function. Though further investigations are needed, evidence for the biophysical interaction between FOXP3 and Siva invites the possibility that Siva may be important for proper T<sub>reg </sub>cell function.</p
- …