191 research outputs found

    Experimental and numerical analysis on serviceability of cantilevered floor based on human-structure interaction

    Get PDF
    This is the author accepted manuscript. the final version is available from Elsevier via the DOI in this recordTo evaluate the vibration serviceability of structure under human-induced excitation, experimental and numerical analysis were conducted on a cantilevered floor of a gymnasium, which was assumed as a case study. A series of field tests were performed using the ambient excitation and the human excitation approaches on the floor to obtain the fundamental vibration characteristics and human-induced response, respectively. Finite element models (FEMs) of the cantilevered floor were established, modified and validated according to the field test results and the weak constraint effect of glass curtain walls was proposed in this paper. The numerical analysis of human-induced vibration was conducted by considering the pedestrian load as the combination of the Fourier series load model and the mass-spring-damper (MSD) human dynamic model. To better simulate the human-structure interaction (HSI), both the main-harmonics and sub-harmonics load spectra were considered for the equivalent load model due to the characteristics of narrow bands. The results showed that both structural vibration modes and human-induced acceleration responses were in good agreement compared with experimental results. The weak constraint effect of glass curtain walls was then validated. The numerical results were more accurate when considering the influence of HSI on the structural vibration serviceability in practical engineering applications.National Natural Science Foundation of ChinaChina Scholarship Counci

    Probing forces of menisci: what levels are safe for arthroscopic surgery

    Get PDF
    Purpose To facilitate effective learning, feedback on performance during arthroscopic training is essential. Less attention has been paid to feedback on monitoring safe handling of delicate tissues such as meniscus. The goal is to measure in vitro probing forces of menisci and compare them with a theoretical maximum probing force (TMPF). Method Menisci samples of ten cadavers were mounted on force platforms to measure probing forces up to 20 N in three directions. Nineteen subjects participated: six novices (experience 60 arthroscopies), and three faculty (>250 a year). All had to perform three tasks on each meniscus sample with an arthroscopic probe: push three times on the superior meniscal surface, perform one continuous run on the superior meniscal surface, and push three times on the inferior meniscal surface. The absolute maximum probing force (AMPF) was determined for each condition. A multivariable linear regression analysis was performed to assess the influence of experience on the force magnitude (P < 0.05). AMPFs were compared to the TMPF (estimated to be 8.5 N). Results The AMPF of the push task was on average 2.8 N (standard deviation (SD) of 0.8 N), of the continuous run task 2.5 N (SD 0.9 N), and of the pull task 3.9 N (SD 2.0 N). Significant difference was present between experts and novices (P < 0.05). The AMPFs are in the same order of magnitude as the TMPF. Conclusion The results indicate the necessity of using a safety level for tissue manipulation when training arthroscopy and a value for is magnitude.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Single-cell immune profiling reveals markers of emergency myelopoiesis that distinguish severe from mild respiratory syncytial virus disease in infants.

    Get PDF
    Whereas most infants infected with respiratory syncytial virus (RSV) show no or only mild symptoms, an estimated 3 million children under five are hospitalized annually due to RSV disease. This study aimed to investigate biological mechanisms and associated biomarkers underlying RSV disease heterogeneity in young infants, enabling the potential to objectively categorize RSV-infected infants according to their medical needs. Immunophenotypic and functional profiling demonstrated the emergence of immature and progenitor-like neutrophils, proliferative monocytes (HLA-DRLow , Ki67+), impaired antigen-presenting function, downregulation of T cell response and low abundance of HLA-DRLow B cells in severe RSV disease. HLA-DRLow monocytes were found as a hallmark of RSV-infected infants requiring hospitalization. Complementary transcriptomics identified genes associated with disease severity and pointed to the emergency myelopoiesis response. These results shed new light on mechanisms underlying the pathogenesis and development of severe RSV disease and identified potential new candidate biomarkers for patient stratification

    Effect of Ultrasonic-Assisted Blanching on Size Variation, Heat Transfer, and Quality Parameters of Mushrooms

    Get PDF
    The main aim of this work was to assess the influence of the application of power ultrasound during blanching of mushrooms (60 90 °C) on the shrinkage, heat transfer, and quality parameters. Kinetics of mushroom shrinkage was modeled and coupled to a heat transfer model for conventional (CB) and ultrasonic-assisted blanching (UB). Cooking value and the integrated residual enzymatic activity were obtained through predicted temperatures and related to the hardness and color variations of mushrooms, respectively. The application of ultrasound led to an increase of shrinkage and heat transfer rates, being this increase more intense at low process temperatures. Consequently, processing time was decreased (30.7 46.0 %) and a reduction in hardness (25.2 40.8 %) and lightness (13.8 16.8 %) losses were obtained. The best retention of hardness was obtained by the UB at 60 °C, while to maintain the lightness it was the CB and UB at 90 °C. For enhancing both quality parameters simultaneously, a combined treatment (CT), which consisted of a CB 0.5 min at 90 °C and then an UB 19.9min at 60 °C, was designed. In this manner, compared with the conventional treatment at 60 °C, reductions of 39.1, 27.2, and 65.5 % for the process time, hardness and lightness losses were achieved, respectively. These results suggest that the CT could be considered as an interesting alternative to CB in order to reduce the processing time and improve the overall quality of blanched mushrooms.The authors acknowledge the financial support of Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional de La Plata from Argentina, Erasmus Mundus Action 2-Strand 1 and EuroTango II Researcher Training Program and Ministerio de Economia y Competitividad (SPAIN) and the FEDER (project DPI2012-37466-CO3-03).Lespinard, A.; Bon Corbín, J.; Cárcel Carrión, JA.; Benedito Fort, JJ.; Mascheroni, RH. (2015). Effect of Ultrasonic-Assisted Blanching on Size Variation, Heat Transfer, and Quality Parameters of Mushrooms. Food and Bioprocess Technology. 8(1):41-53. https://doi.org/10.1007/s11947-014-1373-zS415381Aguirre, L., Frias, J. M., Barry-Ryan, C., & Grogan, H. (2009). Modelling browning and brown spotting of mushrooms (Agaricus bisporus) stored in controlled environmental conditions using image analysis. Journal of Food Engineering, 91, 280–286.Anantheswaran, R. C., Sastry, S. K., Beelman, R. B., Okereke, A., & Konanayakam, M. (1986). Effect of processing on yield, color, and texture of canned mushrooms. Journal of Food Science, 51(5), 1197–1200.Biekman, E. S. A., Kroese-Hoedeman, H. I., & Schijvens, E. P. H. M. (1996). Loss of solutes during blanching of mushrooms (Agaricus bisporus) as a result of shrinkage and extraction. Journal of Food Engineering, 28(2), 139–152.Biekman, E. S. A., van Remmen, H. H. J., Kroese-Hoedeman, H. I., Ogink, J. J. M., & Schijvens, E. P. H. M. (1997). Effect of shrinkage on the temperature increase in evacuated mushrooms (Agaricus bisporus) during blanching. Journal of Food Engineering, 33(1–2), 87–99.Brennan, M., Le Port, G., & Gormley, R. (2000). Post-harvest treatment with citric acid or hydrogen peroxide to extend the shelf life of fresh sliced mushrooms. Lebensmittel Wissenschaft und Technologie, 33, 285–289.Cárcel, J. A., Benedito, J., Rosselló, C., & Mulet, A. (2007). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78, 472–479.Cárcel, J. A., Benedito, J., Bon, J., & Mulet, A. (2007). High intensity ultrasound effects on meat brining. Meat Science, 76, 611–619.Cárcel, J. A., García-Pérez, J. V., Benedito, J., & Mulet, A. (2011). Food process innovation through new technologies: Use of ultrasound. Journal of Food Engineering, 110, 200–207.Cheng, X., Zhang, M., & Adhikari, B. (2013). The inactivation kinetics of polyphenol oxidase in mushroom (Agaricus bisporus) during thermal and thermosonic treatmemts. Ultrasonics Sonochemistry, 20, 674–679.Cliffe-Byrnes, V., & O’Beirne, D. (2007). Effects of gas atmosphere and temperature on the respiration rates of whole and sliced mushrooms (Agaricus bisporus): implications for film permeability in modified atmosphere packages. Journal of Food Science, 72, 197–204.Coskuner, Y., & Ozdemir, Y. (1997). Effects of canning processes on the elements content of cultivated mushrooms (Agaricus bisporus). Food Chemistry, 60(4), 559–562.Cruz, R. M. S., Vieira, M. C., Fonseca, S. C., & Silva, C. L. M. (2011). Impact of thermal blanching and thermosonication treatments on watercress (Nasturtium officinale) quality: thermosonication process optimisation and microstructure evaluation. Food and Bioprocess Technology, 4(7), 1197–1204.De Gennaro, L., Cavella, S., Romano, R., & Masi, P. (1999). The use of ultrasound in food technology I: inactivation of peroxidase by thermosonication. Journal of Food Engineering, 39, 401–407.De la Fuente, S., Riera, E., Acosta, V. M., Blanco, A., & Gallego-Juárez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44, 523–527.Delgado, A. E., Zheng, L., & Sun, D. W. (2009). Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology, 2, 263–270.Devece, C., Rodríguez-López, J. N., Fenoll, J. T., Catalá, J. M., De los Reyes, E., & García-Cánovas, F. (1999). Enzyme inactivation analysis for industrial blanching applications: comparison of microwave, conventional, and combination heat treatments on mushroom polyphenoloxidase activity. Journal of Agricultural and Food Chemistry, 47(11), 4506–4511.Fernandes, F. A. N., & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: dehydration of banana. Journal of Food Engineering, 82, 261–267.Gabaldón-Leyva, C. A., Quintero-Ramos, A., Barnard, J., Balandrán-Quintana, R. R., Talamás-Abbud, R., & Jiménez-Castro, J. (2007). Effect of ultrasound on the mass transfer and physical changes in brine bell pepper at different temperatures. Journal of Food Engineering, 81, 374–379.Gallego-Juárez, J. A., Riera, E., De la Fuente, S., Rodríguez-Corral, G., Acosta-Aparicio, V. M., & Blanco, A. (2007). Application of high-power ultrasound for dehydration of vegetables: processes and devices. Drying Technology, 25, 1893–1901.Gamboa-Santos, J., Montilla, A., Soria, A. C., & Villamiel, M. (2012). Effects of conventional and ultrasound blanching on enzyme inactivation and carbohydrate content of carrots. European Food Research and Technology, 234, 1071–1079.García-Pérez, J. V., Cárcel, J. A., De la Fuente, S., & Riera, E. (2006). Ultrasonic drying of foodstuff in a fluidized bed. Parametric study. Ultrasonics, 44, 539–543.García-Pérez, J. V., Cárcel, J. A., Riera, E., Rosselló, C., & Mulet, A. (2012). Intensification of low-temperature drying by using ultrasound. Drying Technology, 30, 1199–1208.Gonzáles-Fandos, E., Giménez, M., Olarte, C., Sanz, S., & Simón, A. (2000). Effect of packaging conditions on the growth of microorganisms and the quality characteristics of fresh mushrooms (Agaricus bisporus) stored at inadequate temperatures. Journal of Applied Microbiology, 89, 624–632.Gormley, T. R. (1975). Chill storage of mushrooms. Journal of the Science of Food and Agriculture, 26, 401–411.Gouzi, H., Depagne, C., & Coradin, T. (2012). Kinetics and thermodynamics of thermal inactivation of polyfenol oxidase in an aqueous extract from Agaricus bisporus. Journal of Agricultural and Food Chemistry, 60, 500–506.Holdsworth, S. D. (1997). Thermal processing of packaged foods. London: Chapman Hall.Horžić, D., Jambrak, A. R., Belščak-Cvitanović, A., Komes, D., & Lelas, V. (2012). Comparison of conventional and ultrasound assisted extraction techniques of yellow tea and bioactive composition of obtained extracts. Food and Bioprocess Technology, 5, 2858–2870.Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007a). Ultrasonic effect on pH, electric conductivity, and tissue surface of button mushrooms, brussels sprouts and cauliflower. Czech Journal of Food Science, 25, 90–99.Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007b). Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81, 88–97.Jasinski, E. M., Stemberger, B., Walsh, R., & Kilara, A. (1984). Ultra structural studies of raw and processed tissue of the major cultivated mushroom, Agaricus bisporus. Food Microstructure, 3, 191–196.Jolivet, S., Arpin, N., Wicher, H. J., & Pellon, G. (1998). Agaricus bisporus browning: a review. Mycological Research, 102, 1459–1483.Konanayakam, M., & Sastry, S. K. (1988). Kinetics of shrinkage of mushroom during blanching. Journal of Food Science, 53(5), 1406–1411.Kotwaliwale, N., Bakane, P., & Verma, A. (2007). Changes in textural and optical properties of oyster mushroom during hot air drying. Journal of Food Engineering, 78(4), 1207–1211.Leadley C. & Williams A. (2002). Power ultrasound—current and potential applications for food processing, Review No 32, Campden and Chorleywood Food Research Association.Lespinard, A. R., Goñi, S. M., Salgado, P. R., & Mascheroni, R. H. (2009). Experimental determination and modeling of size variation, heat transfer and quality indexes during mushroom blanching. Journal of Food Engineering, 92, 8–17.Lima, M., & Sastry, S. K. (1990). Influence of fluid rheological properties and particle location on ultrasound-assisted heat transfer between liquid and particles. Journal of Food Science, 55(4), 1112–1115.López, P., & Burgos, J. (1995). Peroxidase stability and reactivation after heat treatment and manothermosonication. Journal of Food Science, 60(3), 551–553.López, P., Sala, F. J., Fuente, J. L., Cardon, S., Raso, J., & Burgos, J. (1994). Inactivation of peroxidase lipoxigenase and phenol oxidase by manothermosonication. Journal of Agricultural and Food Chemistry, 42(2), 253–256.Mansfield, T. (1962). High temperature-short time sterilization. Proceedings First International Congress on Food Science and Technology, 4, 311–316.Mason T. J. (1998). Power ultrasound in food processing—the way forward. In M. J. W. Povey & T. J. Mason (Eds.), Ultrasound in Food Processing (pp 103–126). Blackie Academic & Professional, London.McArdle F. J. & Curwen D. (1962). Some factors influencing shrinkage of canned mushrooms. Mushroom Science, 5, 547–557.McArdle, F. J., Kuhn, G. D., & Beelman, R. B. (1974). Influence of vacuum soaking on yield and quality of canned mushrooms. Journal of Food Science, 39, 1026–1028.Mohapatra, D., Bira, Z. M., Kerry, J. P., Frías, J. M., & Rodrigues, F. A. (2010). Postharvest hardness and color evolution of White button mushrooms (Agaricus bisporus). Journal of Food Science, 75(3), 146–152.Ohlsson, T. (1980). Temperature dependence of sensory quality changes during thermal processing. Journal of Food Science, 45(4), 836–847.Ortuño, C., Martínez-Pastor, M., Mulet, A., & Benedito, J. (2013). Application of high power ultrasound in the supercritical carbon dioxide inactivation of Saccharomyces cerevisiae. Food Research International, 51, 474–481.Peralta-Jimenez, L., & Cañizares-Macías, M. P. (2012). Ultrasound-assisted method for extraction of theobromine and caffeine from cacao seeds and chocolate products. Food and Bioprocess Technology, 6, 3522–3529.Rodríguez-López, J. N., Fenoll, N. G., Tudela, J., Devece, C., Sánchez-Hernández, D., De los Reyes, D., et al. (1999). Thermal inactivation of mushroom polyphenoloxidase employing 2450 MHz microwave radiation. Journal of Agricultural Food Chemistry, 47, 3028–3035.Sala, F., Burgos, J., Condon, S., Lopez, P., & Raso, J. (1995). Effect of heat and ultrasound on microorganisms and enzymes. In G. W. Gould (Ed.), New methods of food preservation (1st ed., pp. 176–204). Glasgow: Blackie Academic and professional.Sanjuán, N., Hernando, I., Lluch, M. A., & Mullet, A. (2005). Effects of low temperature blanching on texture, microstructure and rehydration capacity of carrots. Journal of the Science of Food and Agriculture, 85, 2071–2076.Santos, M. V., & Lespinard, A. R. (2011). Numerical simulation of mushrooms during freezing using the FEM and an enthalpy—Kirchhoff formulation. Heat and Mass Transfer, 47, 1671–1683.Sastry, S. K., Beelman, R. B., & Speroni, J. J. (1985). A three-dimensional finite element model for thermally induced changes in foods: application to degradation of agaritine in canned mushrooms. Journal of Food Science, 50(5), 1293–1299.Sastry, S. K., Shen, G. Q., & Blaisdel, J. L. (1989). Effect of ultrasonic vibration on fluid-to-particule convective heat transfer coefficients. Journal of Food Science, 54(1), 229–230.Sensoy, I., & Sastry, S. K. (2004). Ohmic blanching of mushrooms. Journal of Food Process Engineering, 27(1), 1–15.Sheen, S., & Hayakawa, K. (1991). Finite difference simulation for heat conduction with phase change in an irregular food domain with volumetric change. International Journal of Heat and Mass Transfer, 34(6), 1337–1346.Simal, S., Benedito, J., Sanchez, E. S., & Rossello, C. (1998). Use of ultrasound to increase mass transport rates during osmotic dehydration. Journal of Food Engineering, 36, 323–336.Siró, I., Vén, C., Balla, C., Jónás, G., Zeke, I., & Friedrich, L. (2009). Application of an ultrasonic assisted curing technique for improving the diffusion of sodium chloride in porcine meat. Journal of Food Engineering, 91, 353–362.Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity in foods: a review. Trends in Food Science and Technology, 21, 323–331.Verlinden, B. E., Yuksel, D., Baheri, M., De Baerdemaeker, J., & Van Dijk, C. (2000). Low temperature blanching effect on the changes in mechanical properties during subsequent cooking of three potato cultivars. International Journal of Food Science and Technology, 35, 331–340.Wu, C. M., Wu, J. L.-P., Chen, C.-C., & Chou, C.-C. (1981). Flavor recovery from mushroom blanching water. In G. Charalambous & G. Inglett (Eds.), The quality of foods and beverages: chemistry and technology, vol. 1. New York: Academic Press.Zivanovic, S., & Buescher, R. (2004). Changes in mushroom texture and cell wall composition affected by thermal processing. Journal of Food Science, 69, 44–48

    Selective Persulfide Detection Reveals Evolutionarily Conserved Antiaging Effects of S-Sulfhydration

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordData and Code Availability The raw data corresponding to the antibody microarray Detection of persulfidation of EGFR Pathway kinases represent entirely new application of the dimedone switch method and are therefore available in more detail from the corresponding author on request. Proteomic data used for Figure S2C are stored in Data S1 and S2 and for Figures S3H and S3I in Data S3 and S4. All in-gel persulfidation, as well as Western blot sufenylation and sulfynilation data are reported in main and supporting Figures. Other raw data are available at https://data.mendeley.com/datasets/pw2wz39tsk/2Life on Earth emerged in a hydrogen sulfide (H2S)-rich environment eons ago and with it protein persulfidation mediated by H2S evolved as a signaling mechanism. Protein persulfidation (S-sulfhydration) is a post-translational modification of reactive cysteine residues, which modulate protein structure and/or function. Persulfides are difficult to label and study due to their reactivity and similarity with cysteine. Here, we report a facile strategy for chemoselective persulfide bioconjugation using dimedone-based probes, to achieve highly selective, rapid, and robust persulfide labeling in biological samples with broad utility. Using this method, we show persulfidation is an evolutionarily conserved modification and waves of persulfidation are employed by cells to resolve sulfenylation and prevent irreversible cysteine overoxidation preserving protein function. We report an age-associated decline in persulfidation that is conserved across evolutionary boundaries. Accordingly, dietary or pharmacological interventions to increase persulfidation associate with increased longevity and improved capacity to cope with stress stimuli.IDEX BordeauxFRMMedical Research Council (MRC)Brian Ridge ScholarshipNorthcott Devon Medical Research FoundationMinistry of Education, Science and Technology Development of the Republic of SerbiaNIHDFG, GermanyAmerican Heart Association-Allen Initiative in Brain Health and Cognitive Impairmen

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Background: Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. // Methods: We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung's disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. // Findings: We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung's disease) from 264 hospitals (89 in high-income countries, 166 in middle-income countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in low-income countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. // Interpretation: Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between low-income, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    corecore