172 research outputs found

    Variation of 52 new Y-STR loci in the Y Chromosome Consortium worldwide panel of 76 diverse individuals

    Get PDF
    We have established 16 small multiplex reactions of two–four loci to amplify 52 recently described single-copy simple Y-STRs and typed these loci in a worldwide panel of 74 diverse men and two women. Two Y-STRs were found to be commonly multicopy in this sample set and were excluded from the study. Of the remaining 50, four (DYS481, DYS570, DYS576 and DYS643) showed higher diversities than the commonly used loci and can potentially provide increased haplotype discrimination in both forensic and anthropological work. Ten loci showed occasional missing alleles, duplicated peaks or intermediate-sized alleles. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available for this article at http://dx.doi.org/10.1007/s00414-006-0124-8 and is accessible for authorized users

    People of the British Isles: preliminary analysis of genotypes and surnames in a UK control population

    Get PDF
    There is a great deal of interest in fine scale population structure in the UK, both as a signature of historical immigration events and because of the effect population structure may have on disease association studies. Although population structure appears to have a minor impact on the current generation of genome-wide association studies, it is likely to play a significant part in the next generation of studies designed to search for rare variants. A powerful way of detecting such structure is to control and document carefully the provenance of the samples involved. Here we describe the collection of a cohort of rural UK samples (The People of the British Isles), aimed at providing a well-characterised UK control population that can be used as a resource by the research community as well as providing fine scale genetic information on the British population. So far, some 4,000 samples have been collected, the majority of which fit the criteria of coming from a rural area and having all four grandparents from approximately the same area. Analysis of the first 3,865 samples that have been geocoded indicates that 75% have a mean distance between grandparental places of birth of 37.3km, and that about 70% of grandparental places of birth can be classed as rural. Preliminary genotyping of 1,057 samples demonstrates the value of these samples for investigating fine scale population structure within the UK, and shows how this can be enhanced by the use of surnames

    Identification of a region required for TSC1 stability by functional analysis of TSC1 missense mutations found in individuals with tuberous sclerosis complex

    Get PDF
    Background: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterised by the development of hamartomas in a variety of organs and tissues. The disease is caused by mutations in either the TSC1 gene on chromosome 9q34, or the TSC2 gene on chromosome 16p13.3. The TSC1 and TSC2 gene products, TSC1 and TSC2, form a protein complex that inhibits signal transduction to the downstream effectors of the mammalian target of rapamycin (mTOR). Recently it has been shown that missense mutations to the TSC1 gene can cause TSC. Methods: We have used in vitro biochemical assays to investigate the effects on TSC1 function of TSC1 missense variants submitted to the Leiden Open Variation Database. Results: We identified specific substitutions between amino acids 50 and 190 in the N-terminal region of TSC1 that result in reduced steady state levels of the protein and lead to increased mTOR signalling. Conclusion: Our results suggest that amino acid residues within the N-terminal region of TSC1 are important for TSC1 function and for maintaining the activity of the TSC1-TSC2 complex

    Functional characterisation of the TSC1–TSC2 complex to assess multiple TSC2 variants identified in single families affected by tuberous sclerosis complex

    Get PDF
    BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterised by seizures, mental retardation and the development of hamartomas in a variety of organs and tissues. The disease is caused by mutations in either the TSC1 gene on chromosome 9q34, or the TSC2 gene on chromosome 16p13.3. The TSC1 and TSC2 gene products, TSC1 and TSC2, interact to form a protein complex that inhibits signal transduction to the downstream effectors of the mammalian target of rapamycin (mTOR). METHODS: We have used a combination of different assays to characterise the effects of a number of pathogenic TSC2 amino acid substitutions on TSC1-TSC2 complex formation and mTOR signalling. RESULTS: We used these assays to compare the effects of 9 different TSC2 variants (S132C, F143L, A196T, C244R, Y598H, I820del, T993M, L1511H and R1772C) identified in individuals with symptoms of TSC from 4 different families. In each case we were able to identify the pathogenic mutation. CONCLUSION: Functional characterisation of TSC2 variants can help identify pathogenic changes in individuals with TSC, and assist in the diagnosis and genetic counselling of the index cases and/or other family members

    Discovery of Western European R1b1a2 Y Chromosome Variants in 1000 Genomes Project Data: An Online Community Approach

    Get PDF
    The authors have used an online community approach, and tools that were readily available via the Internet, to discover genealogically and therefore phylogenetically relevant Y-chromosome polymorphisms within core haplogroup R1b1a2-L11/S127 (rs9786076). Presented here is the analysis of 135 unrelated L11 derived samples from the 1000 Genomes Project. We were able to discover new variants and build a much more complex phylogenetic relationship for L11 sub-clades. Many of the variants were further validated using PCR amplification and Sanger sequencing. The identification of these new variants will help further the understanding of population history including patrilineal migrations in Western and Central Europe where R1b1a2 is the most frequent haplogroup. The fine-grained phylogenetic tree we present here will also help to refine historical genetic dating studies. Our findings demonstrate the power of citizen science for analysis of whole genome sequence data

    Topical rapamycin inhibits tuberous sclerosis tumor growth in a nude mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Skin manifestations of Tuberous Sclerosis Complex (TSC) cause significant morbidity. The molecular mechanism underlying TSC is understood and there is evidence that systemic treatment with rapamycin or other mTOR inhibitors may be a useful approach to targeted therapy for the kidney and brain manifestations. Here we investigate topical rapamycin in a mouse model for TSC-related tumors.</p> <p>Methods</p> <p>0.4% and 0.8% rapamycin ointments were applied to nude mice bearing subcutaneous, TSC-related tumors. Topical treatments were compared with injected rapamycin and topical vehicle. Rapamycin levels in blood and tumors were measured to assess systemic drug levels in all cohorts.</p> <p>Results</p> <p>Treatment with topical rapamycin improved survival and reduced tumor growth. Topical rapamycin treatment resulted in systemic drug levels within the known therapeutic range and was not as effective as injected rapamycin.</p> <p>Conclusion</p> <p>Topical rapamycin inhibits TSC-related tumor growth. These findings could lead to a novel treatment approach for facial angiofibromas and other TSC skin lesions.</p

    Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle

    Get PDF
    To elucidate genome-level responses to drought and high-salinity stress in rice, a 70mer oligomer microarray covering 36,926 unique genes or gene models was used to profile genome expression changes in rice shoot, flag leaf and panicle under drought or high-salinity conditions. While patterns of gene expression in response to drought or high-salinity stress within a particular organ type showed significant overlap, comparison of expression profiles among different organs showed largely organ-specific patterns of regulation. Moreover, both stresses appear to alter the expression patterns of a significant number of genes involved in transcription and cell signaling in a largely organ-specific manner. The promoter regions of genes induced by both stresses or induced by one stress in more than one organ types possess relative enrichment of two cis-elements (ABRE core and DRE core) known to be associated with water stress. An initial computational analysis indicated that novel promoter motifs are present in the promoters of genes involved in rehydration after drought. This analysis suggested that rice might possess a mechanism that actively detects rehydration and facilitates rapid recovery. Overall, our data supports a notion that organ-specific gene regulation in response to the two abiotic stresses may primarily be mediated by organ-specific transcription responses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11103-006-9111-1) contains supplementary material, which is available to authorized users

    Y-Chromosome Based Evidence for Pre-Neolithic Origin of the Genetically Homogeneous but Diverse Sardinian Population: Inference for Association Scans

    Get PDF
    The island of Sardinia shows a unique high incidence of several autoimmune diseases with multifactorial inheritance, particularly type 1 diabetes and multiple sclerosis. The prior knowledge of the genetic structure of this population is fundamental to establish the optimal design for association studies in these diseases. Previous work suggested that the Sardinians are a relatively homogenous population, but some reports were contradictory and data were largely based on variants subject to selection. For an unbiased assessment of genetic structure, we studied a combination of neutral Y-chromosome variants, 21 biallelic and 8 short tandem repeats (STRs) in 930 Sardinian males. We found a high degree of interindividual variation but a homogenous distribution of the detected variability in samples from three separate regions of the island. One haplogroup, I-M26, is rare or absent outside Sardinia and is very common (0.37 frequency) throughout the island, consistent with a founder effect. A Bayesian full likelihood analysis (BATWING) indicated that the time from the most recent common ancestor (TMRCA) of I-M26, was 21.0 (16.0–25.5) thousand years ago (KYA) and that the population began to expand 14.0 (7.8–22.0) KYA. These results suggest a largely pre-Neolithic settlement of the island with little subsequent gene flow from outside populations. Consequently, Sardinia is an especially attractive venue for case-control genome wide association scans in common multifactorial diseases. Concomitantly, the high degree of interindividual variation in the current population facilitates fine mapping efforts to pinpoint the aetiologic polymorphisms

    The Western and Eastern Roots of the Saami - The Story of Genetic "Outliers" Told by Mitochondrial DNA and Y Chromosomes

    Get PDF
    Funding Information: We thank Tatyana Karafet and Boris Malyarchuk, for useful information; Henry Harpending, for the program POPSTR; Vincent Macaulay, for the program SAMPLING; Ille Hilpus and Jaan Lind, for technical assistance; and Charles Kurland and Thomas Gilbert, for helpful discussion and comments. We are grateful to two anonymous reviewers for their suggestions and advice. The research of R.V. was supported by Estonian basic research grant 514 and European Commission Directorate General Research grant ICA1CT20070006. The research of T.K. was supported by Estonian basic research grant 5574. The work of E.K. was supported by the Russian Foundation for Basic Research (project number 01-04-48487a) and the Ministry of Sciences and Technology of Russia. M.G., S.Z., and L.O. received support from expedition grants from the Siberian Branch of the Russian Academy of Sciences (1992–1997) and the Russian Foundation of Basic Research (project number 02-06-80524-a), and the research of P.R. received support from project number 0196005 of the Ministry of Science and Technology of the Republic of Croatia.The Saami are regarded as extreme genetic outliers among European populations. In this study, a high-resolution phylogenetic analysis of Saami genetic heritage was undertaken in a comprehensive context, through use of maternally inherited mitochondrial DNA (mtDNA) and paternally inherited Y-chromosomal variation. DNA variants present in the Saami were compared with those found in Europe and Siberia, through use of both new and previously published data from 445 Saami and 17,096 western Eurasian and Siberian mtDNA samples, as well as 127 Saami and 2,840 western Eurasian and Siberian Y-chromosome samples. It was shown that the "Saami motif" variant of mtDNA haplogroup U5b is present in a large area outside Scandinavia. A detailed phylogeographic analysis of one of the predominant Saami mtDNA haplogroups, U5b1b, which also includes the lineages of the "Saami motif," was undertaken in 31 populations. The results indicate that the origin of U5b1b, as for the other predominant Saami haplogroup, V, is most likely in western, rather than eastern, Europe. Furthermore, an additional haplogroup (H1) spread among the Saami was virtually absent in 781 Samoyed and Ob-Ugric Siberians but was present in western and central European populations. The Y-chromosomal variety in the Saami is also consistent with their European ancestry. It suggests that the large genetic separation of the Saami from other Europeans is best explained by assuming that the Saami are descendants of a narrow, distinctive subset of Europeans. In particular, no evidence of a significant directional gene flow from extant aboriginal Siberian populations into the haploid gene pools of the Saami was found.Peer reviewe

    Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study.

    Get PDF
    We aimed to accurately estimate the frequency of a hexanucleotide repeat expansion in C9orf72 that has been associated with a large proportion of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD)
    corecore