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Abstract

The authors have used an online community approach, and tools that were readily available via the Internet, to discover
genealogically and therefore phylogenetically relevant Y-chromosome polymorphisms within core haplogroup R1b1a2-L11/
S127 (rs9786076). Presented here is the analysis of 135 unrelated L11 derived samples from the 1000 Genomes Project. We
were able to discover new variants and build a much more complex phylogenetic relationship for L11 sub-clades. Many of
the variants were further validated using PCR amplification and Sanger sequencing. The identification of these new variants
will help further the understanding of population history including patrilineal migrations in Western and Central Europe
where R1b1a2 is the most frequent haplogroup. The fine-grained phylogenetic tree we present here will also help to refine
historical genetic dating studies. Our findings demonstrate the power of citizen science for analysis of whole genome
sequence data.
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Introduction

Population geneticists are in short supply, and most are involved

in the important hunt for genetic factors responsible for

susceptibility to disease [1]. Naturally, studies that address genetic

susceptibility are prioritized over other types of genetic research.

As a result, these studies free up little in the way of both human

and monetary resources dedicated to the application of genetics to

the history of the human species [2,3]. The study of human

phylogenetics is where the practice of citizen science can be

a valuable resource to the scientific community. In the name of

citizen science, the authors of this study pooled together their

resources and volunteered their time to data mine the full genomes

of over a thousand samples that were made freely available

through the 1000 Genomes Project [4].

The 1000 Genomes Project is the first project to sequence the

genomes of a large number of people. The plan for the full project

is to sequence about 2,500 samples; however, only the data sets of

1,197 samples from 13 populations were available in early 2011. It

is estimated that over 100 million European men belong to

haplogroup R1b1a2 (M269) [5], and that greater than 70% of

western European men belong to the specific clade defined by

SNP L11 [6]. The focus of the work was finding phyologenetic Y-

DNA variants in the two largest sub-clades of L11: S116/P312

(rs34276300) and U106/S21 (rs16981293). To illustrate the need

for more refined testing, no study to date has tested for L48

(rs13303755), the most frequent variant in the U106 branch of

L11 (http://www.familytreedna.com/public/u106/), and pub-

lished studies still show ambiguous S116 (xU152, L21) as the

most frequent variant in Spain, Portugal and parts of France [6,7].

Recently, there has been much controversy in the dating and

dating techniques used to identify the geographical distribution of

R1b1a2 by way of microsatellite variance or diversity [7]. The

paucity of haplogroup defining genetic markers has meant that

these microsatellite-derived dating calculations have to be

conducted without regard to lower level phylogenetic relation-

ships, and therefore erroneously compare populations that may be

phylogenetically distant. By identifying the lower level branches of

the R1b1a2 phylogenetic tree, more accurate dating of truly

related haplogroups will be possible.

Results

By analysing the 1000 Genomes Project Phase 1 data set of

1,197 individuals, we identified 135 samples bearing the L11 SNP.

Excluding Finland, which has a low L11 frequency, approximately

50% of the remaining datasets comprising European populations

CEU (CEPH Utah residents with Northern and Western

European ancestry), GBR (British in England and Scotland), IBS

(Iberian populations in Spain) and TSI (Tuscans in Italy) were

derived at L11 [8]. An additional source of L11 derived datasets

came from Latin American populations MXL (Mexican Ancestry
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in Los Angeles, California), PUR (Puerto Rican in Puerto Rico)

and CML (Colombian in Medellin, Colombia) and to a minor

extent, the ASW (African Ancestry in Southwest US) population.

L11 is divided into two major sub-clades: S116 and U106. A large

majority of L11 samples belong to subclade S116 (109 out of 135

or 81%). Using SAMtools and filtering methodology described in

the methods section, we identified more than 200 putative non-

singleton novel genetic variants in the 135 R1b1a2-L11 samples.

The resulting R1b1a2-L11 phylogenetic tree based on Phase 1

1000 Genomes data is presented in Figures 1, 2, 3 and 4.

R1b1a2-S116 Sub-Haplogroups
Forty-two of the 49 samples that would previously have been

categorized as belonging to unspecified S116(xU152,L21) were

derived for the DF27 SNP (Figure 1). The majority of the DF27

derived samples (71%) were from Latin American/Iberian

populations (CLM, IBS, MXL, PUR). This variant is therefore

likely to account for the majority of previously unclassified

S116(xU152,L21) reported in Iberia and some areas of France

[7]. Below DF27, we identified 17 subclades and a total of 73

novel mutations. We were also able to place previously known

SNP Z278 (rs1469371) into a phylogenetic context and show for

the first time a close relationship between markers M153,

M167/SRY2627 and L176.2. In the branch of S116 defined by

DF27 a total of six new SNPs were validated by PCR

amplification and Sanger sequencing. A description of the

locations and sequences of all primers developed for validation

experiments is given in Table S1.

A smaller subclade of S116(xU152,L21,DF27) consisting of two

GBR samples and a single CEU sample was defined by DF19.

Another S116(xU152,L21,DF27) GBR sample carried the pre-

viously unpublished L238 SNP. The northern European origin of

the sample is not surprising given that all previously known L238

samples have been from Scandinavia (http://www.familytreedna.

com/public/atlantic-r1b1c/).

Marker L21/M529/S127 (rs11799226) is currently perhaps the

most clearly geographically localized of the major L11 sub-

haplogroups, with a high frequency in the British Isles and

Brittany [7]. Twenty-three samples were found to be derived at

marker L21 (Figure 2). Unsurprisingly, most L21 derived samples

Figure 1. Proposed S116 (xU152, L21) Phylogenetic Tree. Genetic variants are indicated on branches, and branch lengths are not proportional
to the number of mutations or the age of the variant. Phylogenetically equivalent markers are shown in alphabetical and numerical order. Full details
of these variants are shown in Table S1. The positions of 1000 Genomes samples are given at the tips of the branches.
doi:10.1371/journal.pone.0041634.g001
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were either from GBR (34.8%) or from the CEU (30.4%)

population, which itself is most similar to samples from the

Netherlands and the UK [9]. The remainder of the samples were

from MXL, CLM, PUR and ASW. We were able to group 13 new

variants into 13 subclades of L21. Ten of the new markers have

been confirmed by PCR amplification and Sanger sequencing.

Some of these were found by comparing L21 derived 1000

Genomes Project samples with two publicly available genomes (see

Materials and Methods). The previously known marker M222 was

re-positioned within the L21 group below DF23, and new sub-

haplogroups were defined by Z251, DF1, DF21 (rs138322855),

Z253 and Z255. DF21 and DF1 lie upstream of a number of new

and previously identified variants, respectively (Figure 2).

The S116 downstream marker U152/S28 (rs1236440) defines

the most common Y chromosome haplogroup in northern and

central Italy, Switzerland, eastern France and Corsica [7]. The

genomes of 36 U152 derived males were analyzed (Figure 3).

Samples from the Tuscany region of Italy were found to have

a high frequency of U152 (29.4%). This correlates well with the

frequency of 32.4% previously reported in central Italy and the

32.1% found in Corsica [7,10]. We were able to further refine

U152 into 26 subclades. Fifty-four new variants were found in all,

11 of which have been validated by PCR amplification and Sanger

sequencing. Additionally, SNPs Z367 (rs7067387), Z258

(rs9785865), Z384 (rs28819996), Z1905 (rs7892878), Z383

(rs34173183), Z1908 (rs11799240) and Z1912 (rs4893798) were

placed below U152 in the phylogenetic tree for the first time. To

date all U152 samples with DYS492= 14 appear to be in the Z56

subbhaplogroup, including, but not limited to those derived at

marker L4 (Family Tree DNA R1b-U152 Project: http://www.

familytreedna.com/public/R1b-U152/default.aspx).

Of the four remaining S116(xDF19, DF27, L21, L238, L617,

U152) samples, three were missing data for DF27 and a fourth had

a weak ancestral read.

R1b1a2-U106 Sub-Haplogroups
Sub-haplogroup U106/S21/M405 (rs16981293) (Figure 4)

makes up the other half of the L11 story in Europe. It is the

most common R1b1a2 marker in central Europe, and is by far

the most frequent SNP in the Netherlands and Belgium [7,11].

Twenty-six samples were found derived at marker U106. As was

the case with marker L21, GBR (42.3%) and CEU (42.3%)

Figure 2. Proposed L21 Phylogenetic Tree. Genetic variants are indicated on branches, and branch lengths are not proportional to the number
of mutations or the age of the variant. Phylogenetically equivalent markers are shown in alphabetical and numerical order. Full details of these
variants are shown in Table S1. The positions of 1000 Genomes samples are given at the tips of the branches.
doi:10.1371/journal.pone.0041634.g002
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population samples made up a large percentage of U106

samples. The U106 tree now consists of 30 downstream

subclades. We found 49 novel SNPs in this group and were

able to place known SNPs Z301 (rs35121273) and Z381

(rs34001725) into the U106 sub-haplogroup. Fifteen of these

new variants were confirmed by PCR amplification and Sanger

sequencing. The known markers L48 (rs13303755) and U198/

S29 (rs17222279) were also relocated to lower branches in the

U106 tree. George Church’s genome allowed us to place U198

with respect to other 1000 Genome Project samples (http://

www.personalgenomes.org/pgp10.html).

The Validated L11 Phylogeny
Despite using a number of filtering steps to reduce false

discovery rates, it remains formally possible that a number of

variants may be artefacts, or are refractory to Sanger sequencing.

Thus we also present here a summary of the L11 phylogeny

containing all polymorphisms that have been independently

validated to date by PCR amplification and Sanger Sequencing

(Figure 5).

Discussion

The Y chromosome haplogroup tree has evolved from

a collection of 243 unique polymorphisms in 2002, to several

thousand markers today [12] (http://www.isogg.org/tree/). The

availability of high quality whole-chromosome sequence data from

thousands of individuals has expedited the discovery of new

polymorphisms, and the open access nature of the 1000 Genomes

Project has enabled public volunteers to practice citizen science to

trail-blaze a new haplogroup tree for R1b1a2-L11.

The R1b1a2-L11 haplogroup is prevalent in Western Europe,

and this has led to conflicting opinions about the spread of

populations from east to west since the Neolithic [5,6]. Busby et al.

stated that coalescence estimates explicitly depend on the STRs

that one uses [7], thus the use of relatively small numbers of

microsatellite markers in previous studies may have been

Figure 3. Proposed U152 Phylogenetic Tree. Genetic variants are indicated on branches, and branch lengths are not proportional to the
number of mutations or the age of the variant. Phylogenetically equivalent markers are shown in alphabetical and numerical order. Full details of
these variants are shown in Table S1. The positions of 1000 Genomes samples are given at the tips of the branches.
doi:10.1371/journal.pone.0041634.g003
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problematic, but a more precise sub-classification of R1b1a2-L11

by SNPs will help to resolve these controversies. Better SNP

resolution could also answer questions regarding the use of

evolutionarily effective and germ line mutation rates [13]. Given

the regional affinities of L21, U152, U106 and now DF27, we can

already see where studying their downstream variants can help

answer questions whose answers have long eluded archaeologists

and linguists alike, especially if some of the newly defined

haplogroups prove to be geographically clustered.

In Iberia, previous data suggests evidence of gene flow between

Basques and Catalan speaking populations based on the distribu-

tion of M167 (SRY2627) [14,15,16]. Our placement of M153,

a marker that has been linked to Basque populations [17], and

SRY2627 as downstream variants of DF27 further illustrates this

close relationship. The position of M153 many levels down on the

phylogenetic tree also shows its relative youth within R1b1a2, as

does its low STR diversity [18] (Family Tree DNA M153 Project:

http://www.familytreedna.com/public/R-

M153_The_Basque_Marker/default.aspx).

The concentration of Latin American/Iberian samples derived

at DF27 shows the geographical importance of this marker in

Iberia. That only Latin American samples were members of the

DF27 subclade defined by the mutations Z225 and Z229 further

illustrates strong Iberian ties and is consistent with the possibility of

colonial era founders in the Americas [19].

Genetic approaches offer unique possibilities to resolve long-

standing historical and archaeological dilemmas. Analysis of

subclades defined by the new genetic markers reported here could

help resolve some of these. As marker L21 has its highest

frequencies in areas where insular Celtic languages once

dominated, and some areas where they are still spoken today,

there is no doubt that understanding it subclades will be

instrumental in any debate regarding Celtic origins [20]. Given

that U152 is the most frequent marker in northern and central

Figure 4. Proposed U106 Phylogenetic Tree. Genetic variants are indicated on branches, and branch lengths are not proportional to the
number of mutations or the age of the variant. Phylogenetically equivalent markers are shown in alphabetical and numerical order. Full details of
these variants are shown in Table S1. The positions of 1000 Genomes samples are given at the tips of the branches.
doi:10.1371/journal.pone.0041634.g004
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Italy, its new subclades should prove valuable in resolving the

fundamental problems of establishing the origin of IE groups in

Italy [20,21,22]. Marker U106 and its subclades, so prominent

along the Rhine River, can give insights into the spread of

Germanic languages. And finally, any future testing of ancient Y-

DNA Bell Beaker skeletons should start testing for these markers as

Bell Beaker skeletons have already turned up derived at marker

R1b-M269 with no downstream markers tested [23]. The

discovery of these new markers is only the first step. While

commercial testing of some of these markers has commenced, the

real benefit will come from typing a large number of L11 derived

individuals of phylogeographic background.

We are currently witnessing the resolution of two of the biggest

impediments to human population genetics. The first is that of

cost, with the $1,000 full genome sequence seemingly around the

corner [24]. The second is the extraction of ancient Y-DNA,

which is already becoming a reality [25,26]. The more econom-

ically feasible it is to sequence the entire genome of existing

humans and the easier it is to apply the novel variants found in this

study and compare them to ancient Y-DNA, the quicker our

historical, archaeological and linguistic questions will be answered

in regard to the populating of Western Europe by R1b1a2.

The progress we have made towards resolving the L11

phylogeny has been significant considering that none of the

authors of this manuscript have ever met, nor spoken on the

phone. Open source data, open source tools, and open forums

enable research collaborations to blossom. In fact, other citizen

scientists are currently using similar approaches to find ground-

breaking SNPs in other branches of the Y chromosome

haplogroup tree.

Materials and Methods

The main mode of communication was through the DNA-

Forums website (DNA-Forums, A Genetic Genealogy Communi-

ty, http://dna-forums.org). It was here that general information

on data mining techniques and the discovery of new variants was

shared and discussed amongst team members. The ISOGG

phylogenetic tree was used as a starting point for phylogenetic

placement as it was found to be the most current (http://www.

isogg.org/tree/ISOGG_HapgrpR.html).

SAMtools [27], and related utilities were used to query low

coverage (2–4x) datasets from publicly accessible FTP sites at the

European Bioinformatics Institute (ftp://ftp.1000genomes.ebi.ac.

uk/vol1/ftp/) and the National Center for Biotechnology In-

formation (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/). Using

SAMtools tview, samples were screened for the L11 mutation.

BAM index files were then called for each L11 derived sample

along with a control group of non-R1b1a2 samples using

SAMtools mpileup. The resulting BCF file was then converted

into VCF format by using the bcftools vcfutils.pl script. The

resulting VCF file was opened in MS Excel for visual identification

of potential SNPs downstream of L11.

Novel variants were filtered by verifying that all non-L11

control samples bore the ancestral allele, and by identifying at least

two L11 samples that carried the same derived allele. While

hundreds of singletons were found, they were not catalogued.

Variants which had heterozygous allele calls were disregarded, as

were those with phylogenetic inconsistencies that more than likely

arose in duplicated or recombining regions of the Y-chromosome.

Once a variant fitting these filtering criteria was found, it was

further verified by making individual calls to the respective

chromosome Y position using the SAMtools tview. These positions

were also cross-referenced against the Family Tree DNA Y

Chromosome Browser (http://ymap.ftdna.com) to determine

whether the variants were novel.

A master list of new variants was kept in a centralized

spreadsheet stored in Google Docs (https://docs.google.com),

a freely available cloud storage service. This made uploading,

storing and organising the data easier to manage and readily

available to any citizen scientist with access to the Internet.

Primers (see Table S1) were designed for a number of variants

of genealogical or phylogenetic importance, using Primer3 [28], or

the National Center for Biotechnology Information online Primer-

BLAST tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast/).

Variants were validated using PCR and Sanger sequencing.

Several other publicly available genome data sets were used for

the identification of new variants. These included Jay Flatley’s

genome (http://aws.amazon.com/datasets/3357), the first Irish

genome [29] and the genomes of Henry Louis Gates Jnr and Snr

(http://snp.med.harvard.edu).

Supporting Information

Table S1 Details of all genetic variants identified using
1000 Genomes data details of PCR primers used to
validate variants using Sanger Sequencing.
(XLSX)
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