4,380 research outputs found

    Structure Preserving Parallel Algorithms for Solving the Bethe-Salpeter Eigenvalue Problem

    Full text link
    The Bethe-Salpeter eigenvalue problem is a dense structured eigenvalue problem arising from discretized Bethe-Salpeter equation in the context of computing exciton energies and states. A computational challenge is that at least half of the eigenvalues and the associated eigenvectors are desired in practice. We establish the equivalence between Bethe-Salpeter eigenvalue problems and real Hamiltonian eigenvalue problems. Based on theoretical analysis, structure preserving algorithms for a class of Bethe-Salpeter eigenvalue problems are proposed. We also show that for this class of problems all eigenvalues obtained from the Tamm-Dancoff approximation are overestimated. In order to solve large scale problems of practical interest, we discuss parallel implementations of our algorithms targeting distributed memory systems. Several numerical examples are presented to demonstrate the efficiency and accuracy of our algorithms

    Optical and Gamma-Ray Variability Behaviors of 3C 454.3 from 2006 to 2011

    Full text link
    We present our photometric monitoring of a flat spectrum radio quasar (FSRQ) 3C 454.3 at Yunnan observatories from 2006 to 2011. We find that the optical color of 3C 454.3 shows obvious redder-when-brighter trend, which reaches a saturation stage when the source is brighter than 15.15 mag at V band. We perform a simulation with multiple values of disk luminosity and spectral index to reproduce the magnitude-color diagram. The results show that the contamination caused by the disk radiation alone is difficult to produce the observed color variability. The variability properties during the outburst in December 2009 are also compared with γ\gamma-ray data derived from Fermi γ\gamma-ray space telescope. The flux variation of these two bands follow a linear relation with FγFR1.14±0.07F_{\gamma} \propto F_R^{1.14\pm0.07}, which provides an observational evidence for external Compton process in 3C 454.3. Meanwhile, this flux correlation indicates that electron injection is the main mechanism for variability origin. We also explore the variation of the flux ratio Fγ/FRF_{\gamma}/F_R and the detailed structures in the lightcurves, and discuss some possible origins for the detailed variability behaviors.Comment: accepted for publication in The Astrophysical Journal, 5 figures, 2 table

    Inhaled Budesonide and Oral Dexamethasone Prevent Acute Mountain Sickness

    Get PDF
    AbstractBackgroundThis double-blind, randomized controlled trial aimed to investigate inhaled budesonide and oral dexamethasone compared with placebo for their prophylactic efficacy against acute mountain sickness after acute high-altitude exposure.MethodsThere were 138 healthy young male lowland residents recruited and randomly assigned to receive inhaled budesonide (200 μg, twice a day [bid]), oral dexamethasone (4 mg, bid), or placebo (46 in each group). They traveled to 3900 m altitude from 400 m by car. Medication started 1 day before high-altitude exposure and continued until the third day of exposure. Primary outcome measure was the incidence of acute mountain sickness after exposure.ResultsOne hundred twenty-four subjects completed the study (42, 39, and 43 in the budesonide, dexamethasone, and placebo groups, respectively). Demographic characteristics were comparable among the 3 groups. After high-altitude exposure, significantly fewer participants in the budesonide (23.81%) and dexamethasone (30.77%) groups developed acute mountain sickness compared with participants receiving placebo (60.46%) (P = .0006 and P = .0071, respectively). Both the budesonide and dexamethasone groups had lower heart rate and higher pulse oxygen saturation (SpO2) than the placebo group at altitude. Only the budesonide group demonstrated less deterioration in forced vital capacity and sleep quality than the placebo group. Four subjects in the dexamethasone group reported adverse reactions.ConclusionsBoth inhaled budesonide (200 μg, bid) and oral dexamethasone (4 mg, bid) were effective for the prevention of acute mountain sickness, especially its severe form, compared with placebo. Budesonide caused fewer adverse reactions than dexamethasone

    Effects of retinoic acid isomers on apoptosis and enzymatic antioxidant system in human breast cancer cells

    Get PDF
    Retinoic acids (RAs) modulate growth, differentiation, and apoptosis in normal, pre-malignant & malignant cells. In the present study, the effects of RA isomers (all-trans RA, 13-cis RA, and 9-cis RA) on the cell signal transduction of human breast cancer cells have been studied. The relationship between RAs and an enzymatic antioxidant system was also determined. Estrogen-receptor (ER) positive MCF-7 and ER-negative MDA-MB-231 human breast cancer cells were treated with different doses of each RA isomers, all-trans RA, 13-cis RA, or 9-cis RA. Treatment of RA isomers inhibited cell viability and induced apoptosis of MCF-7 cells as a result of increased caspase activity in cytoplasm and cytochrome C released from mitochondria. All-trans RA was the most effective RA isomer in both cell growth inhibition and induction of apoptosis in MCF-7 cells. However, no significant effect of RA isomers was observed on the cell growth or apoptosis in ER-negative MDA-MB-231 cells. In addition, activities of antioxidant enzymes such as catalase and glutathione peroxidase were decreased effectively after treatment of RA in MCF-7 cells, whereas SOD activity was rarely affected. Thus, the present data suggest that all-trans RA is the most potential inducer of apoptosis and modulator of antioxidant enzymes among RA isomers in MCF-7 human breast cancer cells

    Use of direct and iterative solvers for estimation of SNP effects in genome-wide selection

    Get PDF
    The aim of this study was to compare iterative and direct solvers for estimation of marker effects in genomic selection. One iterative and two direct methods were used: Gauss-Seidel with Residual Update, Cholesky Decomposition and Gentleman-Givens rotations. For resembling different scenarios with respect to number of markers and of genotyped animals, a simulated data set divided into 25 subsets was used. Number of markers ranged from 1,200 to 5,925 and number of animals ranged from 1,200 to 5,865. Methods were also applied to real data comprising 3081 individuals genotyped for 45181 SNPs. Results from simulated data showed that the iterative solver was substantially faster than direct methods for larger numbers of markers. Use of a direct solver may allow for computing (co)variances of SNP effects. When applied to real data, performance of the iterative method varied substantially, depending on the level of ill-conditioning of the coefficient matrix. From results with real data, Gentleman-Givens rotations would be the method of choice in this particular application as it provided an exact solution within a fairly reasonable time frame (less than two hours). It would indeed be the preferred method whenever computer resources allow its use

    Photoelectron Spectroscopy at the Graphene-Liquid Interface Reveals the Electronic Structure of an Electrodeposited Cobalt/Graphene Electrocatalyst.

    Get PDF
    Electrochemically grown cobalt on graphene exhibits exceptional performance as a catalyst for the oxygen evolution reaction (OER) and provides the possibility of controlling the morphology and the chemical properties during deposition. However, the detailed atomic structure of this hybrid material is not well understood. To elucidate the Co/graphene electronic structure, we have developed a flow cell closed by a graphene membrane that provides electronic and chemical information on the active surfaces under atmospheric pressure and in the presence of liquids by means of X-ray photoelectron spectroscopy (XPS). We found that cobalt is anchored on graphene via carbonyl-like species, namely Co(CO)x , promoting the reduction of Co(3+) to Co(2+), which is believed to be the active site of the catalyst.HZB is acknowledged for granting beamtime at the ISSIS endstation under proposal #14201159. This work was funded from EU project GRAFOL grant 285275 and by SYNESTESia project grant 05K14EWA (BMBF). R.S.W. acknowledges a Research Fellowship from St. John’s College, Cambridge and a Marie Skłodowska-Curie Individual Fellowship (Global) under grant ARTIST (no. 656870) from the European Union’s Horizon 2020 research and innovation programme.. C.H.C. acknowledges financial support from projects 103-2112-M-032-004 and 102-2632-M-032-001 -MY3. M.S. was supported by the Office of Science, Division of Materials Sciences and Engineering, of the U.S. Department of Energy (DOE) under Contract No. DEAC02-05CH11231.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/anie.20150604

    Refinement of pore size at sub-angstrom precision in robust metal-organic frameworks for separation of xylenes

    Get PDF
    The demand for xylenes is projected to increase over the coming decades. The separation of xylene isomers, particularly p- and m-xylenes, is vital for the production of numerous polymers and materials. However, current state-of-the-art separation is based upon fractional crystallisation at 220 K which is highly energy intensive. Here, we report the discrimination of xylene isomers via refinement of the pore size in a series of porous metal–organic frameworks, MFM-300, at sub-angstrom precision leading to the optimal kinetic separation of all three xylene isomers at room temperature. The exceptional performance of MFM-300 for xylene separation is confirmed by dynamic ternary breakthrough experiments. In-depth structural and vibrational investigations using synchrotron X-ray diffraction and terahertz spectroscopy define the underlying host–guest interactions that give rise to the observed selectivity (p-xylene < o-xylene < m-xylene) and separation factors of 4.6–18 for p- and m-xylenes
    corecore