8 research outputs found

    Interactive effects of vanadium and phosphorus on their uptake, growth and heat shock proteins in chickpea genotypes under hydroponic conditions

    Get PDF
    The present study was carried out to examine the interaction of vanadium and phosphorus and changes in heat shock genes to optimize the growth of chickpea genotypes. Two sets of hydroponic experiments were carried out using vanadium and phosphorus with five-level central composite design. Five levels of vanadium (0-1180 mu M) and phosphorus (0-100011 mu M) were used to evaluate their interactive effects. Plants fresh biomass and uptake of vanadium and phosphorus were influenced by vanadium and phosphorus application. Enhanced fresh biomass was most likely a result of increased phosphorus uptake by chickpea genotypes. Addition of vanadium induced toxic effects while, higher concentration of phosphorus alleviated its toxic effects. The obtained results also indicated that lower vanadium concentration promoted phosphorus absorption however; higher concentration of vanadium inhibited the phosphorus uptake. The morphological changes in leaves indicated that the cells were deformed and reduced in size when treated with higher vanadium levels with fixed phosphorus while, there was little deformation and reduction in cells size were observed when plants were treated with higher levels of phosphorus with fixed vanadium. Whereas, the proportion of deformation of cells were higher in Balkasar as compared to C-44 genotype. The results also showed that at elevated vanadium with fixed phosphorus, Hsp70 was expressed only in C-44 while, not in Balkasar however, Hsp90 and GAPDH showed non-significant results. (C) 2016 Elsevier B.V. All rights reserved

    Control of Streptomyces alfalfae XY25T Over Clubroot Disease and Its Effect on Rhizosphere Microbial Community in Chinese Cabbage Field Trials

    Get PDF
    Clubroot caused by Plasmodiophora brassicae is one of the most destructive diseases in cruciferous crops. Streptomyces alfalfae XY25T, a biological control agent, exhibited great ability to relieve clubroot disease, regulate rhizosphere bacterial and fungal communities in Chinese cabbage, and promote its growth in greenhouse. Therefore, field experiments were carried out to investigate the effects of S. alfalfae XY25T on clubroot and rhizosphere microbial community in Chinese cabbage. Results showed that the control efficiency of clubroot by S. alfalfae XY25T was 69.4%. Applying the agent can alleviate soil acidification; increase the contents of soil organic matter, available nitrogen, available phosphorus, and available potassium; and enhance activities of invertase, urease, catalase, and alkaline phosphatase. During Chinese cabbage growth, bacterial diversity decreased first and then increased, and fungal diversity decreased gradually after inoculation with S. alfalfae XY25T. High-throughput sequencing analysis showed that the main bacterial phyla were Proteobacteria, Bacteroidetes, Acidobacteria, and Planctomycetes, and the major fungal phyla were Ascomycota and Basidiomycota in rhizosphere soil. The dominant bacterial genera were Flavobacterium, Candidatus, Pseudomonas, Stenotrophomonas, Sphingomonas, Flavisolibacter, and Gemmatimonbacteria with no significant difference in abundance, and the major fungal genera were Monographella, Aspergillus, Hypocreales, Chytridiaceae, Fusarium, Pleosporales, Agaricales, Mortierella, and Pleosporales. The significant differences were observed among Pleosporales, Basidiomycota, Colletotrichum, two strains attributed to Agaricales, and another two unidentified fungi by using S. alfalfae XY25T. Moreover, quantitative real-time PCR results indicated that P. brassicae content was significantly decreased after the agent inoculation. In conclusion, S. alfalfae XY25T can affect rhizosphere microbial communities; therefore, applying the agent is an effective approach to reduce the damage caused by clubroot

    Comparison of antioxidant enzyme activities and DNA damage in chickpea (Cicer arietinum L.) genotypes exposed to vanadium

    No full text
    The present study was done to elucidate the effects of vanadium (V) on photosynthetic pigments, membrane damage, antioxidant enzymes, protein, and deoxyribonucleic acid (DNA) integrity in the following chickpea genotypes: C-44 (tolerant) and Balkasar (sensitive). Changes in these parameters were strikingly dependent on levels of V, at 60 and 120 mg V L-1 induced DNA damage in Balkasar only, while photosynthetic pigments and protein were decreased from 15 to 120 mg V L-1 and membrane was also damaged. It was shown that photosynthetic pigments and protein production declined from 15 to 120 mg V L-1 and the membrane was also damaged, while DNA damage was not observed at any level of V stress in C-44. Moreover, the antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were increased in both genotypes of chickpea against V stress; however, more activities were observed in C-44 than Balkasar. The results suggest that DNA damage in sensitive genotypes can be triggered due to exposure of higher vanadium

    Separation of selenium species in plant tissues by high performance liquid chromatography-ultraviolet treatment-hydride generation atomic fluorescence spectrometry using various mobile phases

    No full text
    Anion-exchange chromatography (Hamilton, PRP-X100) with hydride-generation atomic fluorescence spectrometry (HG-AFS) is commonly used for selenium (Se) speciation analysis in environmental and biological samples. However, retentions of Se species are often different with different mobile phases. To address it, this study systematically investigated mobile phases based on ammonium salts to obtain good resolution of Se species. Various mobile phases, including NH4H2PO4, NH4Ac, NH4NO3 and (NH4)2HPO4, were tested. The best result was obtained with a mobile phase containing 60 mmol L−1 (NH4)2HPO4 at pH 6.0, where the separation of Se species, including selenite [Se(IV)], selenate [Se(VI)], selenocystine (SeCys) and selenomethionine (SeMet), was achieved within 10 min with reasonable resolution. In addition, the recoveries of SeCys, Se (IV), SeMet and Se (VI) in the Se-enriched samples were 95.72 ± 1.60%, 106.89 ± 2.20%, 93.28 ± 2.82% and 91.38 ± 1.27%, respectively. Finally, the proposed method was validated for the determination of Se species in Nicotiana tabacum tissues

    Vanadium, recent advancements and research prospects: A review

    No full text
    corecore