774 research outputs found
Intracoronary trimetazidine does not improve recovery of regional function in a porcine model of repeated ischemia
We evaluated the effect of trimetazidine (TMZ) on recovery of regional cardiac function in anesthetized open-chest pigs, subjected to fifteen 2-minute occlusions of the left anterior descending coronary artery, separated by 2 minutes of reperfusion and a 120-minute recovery period. Regional myocardial function was evaluated by sonomicrometry-derived segment lengthening and the area enclosed by the left ventricular pressure-segment length loop (external work, EW) in animals, which received either an intracoronary infusion of TMZ (33 μg/kg/min, n=6) or saline (1 ml/min, n=7), starting 15 minutes before the first occlusion and ending 2 minutes after the 15th occlusion. In addition, myocardial malondialdehyde production to evaluate oxygen free radical production, oxygen consumption, and the ATP, ADP, and AMP content, as well as the energy charge, were determined at regular time intervals. In control pigs the sequences of occlusion-reperfusion did not affect systemic hemodynamics, except for the LVdP/dtmax, which decreased by 11% during the interventions and did not recover during the following reperfusion period of 2 hours (78% of baseline, p<0.05). Systolic segment length shortening and EW were increased at the end of the first occlusion-reperfusion cycle, decreased gradually during the remainder of the occlusion-reperfusion periods, and did not improve during the recovery period. Energy charge and myocardial blood flow were not impaired, but oxygen consumption was decreased during the recovery period. The malondialdeyde data did not provide evidence for production of oxygen free radicals. TMZ decreased LVdP/dtmax by 6% (p<0.05) and caused a twofold increase in postsystolic segment shortening (p<0.05) before the first occlusion, but did not influence the hemodynamic responses, the changes in regional cardiac function, and the metabolic events produced by repetitive regional ischemia
Charm multiplicity and the branching ratios of inclusive charmless b quark decays in the general two-Higgs-doublet models
In the framework of general two-Higgs-doublet models, we calculate the
branching ratios of various inclusive charmless b decays by using the low
energy effective Hamiltonian including next-to-leading order QCD corrections,
and examine the current status and the new physics effects on the determination
of the charm multiplicity and semileptonic branching ratio .
Within the considered parameter space, the enhancement to the ratio due to the charged-Higgs penguins can be as large as a factor of 8 (3) in
the model III (II), while the ratio can be increased from
the standard model prediction of 2.49% to 4.91% (2.99%) in the model III (II).
Consequently, the value of and can be decreased simultaneously
in the model III. The central value of will be lowered slightly by
about 0.003, but the ratio can be reduced significantly from the
theoretical prediction of in the SM to , for GeV, respectively. We find that
the predicted and the measured now agree within roughly one
standard deviation after taking into account the effects of gluonic charged
Higgs penguins in the model III with a relatively light charged Higgs boson.Comment: 25 pages, Latex file, axodraw.sty, 6 figures. Final version to be
published in Phys.Rev.
NMR and Mossbauer study of spin dynamics and electronic structure of Fe{2+x}V{1-x}Al and Fe2VGa
In order to assess the magnetic ordering process in Fe2VAl and the related
material Fe2VGa, we have carried out nuclear magnetic resonance (NMR) and
Mossbauer studies. 27Al NMR relaxation measurements covered the temperature
range 4 -- 500 K in Fe(2+x)V(1-x)Al samples. We found a peak in the NMR
spin-lattice relaxation rate, 27T1^-1, corresponding to the magnetic
transitions in each of these samples. These peaks appear at 125 K, 17 K, and
165 K for x = 0.10, 0, and - 0.05 respectively, and we connect these features
with critical slowing down of the localized antisite defects. Mossbauer
measurements for Fe2VAl and Fe2VGa showed lines with no hyperfine splitting,
and isomer shifts nearly identical to those of the corresponding sites in Fe3Al
and Fe3Ga, respectively. We show that a model in which local band filling leads
to magnetic regions in the samples, in addition to the localized antisite
defects, can account for the observed magnetic ordering behavior.Comment: 5 pages, 3 figure
A Topological Study of Chaotic Iterations. Application to Hash Functions
International audienceChaotic iterations, a tool formerly used in distributed computing, has recently revealed various interesting properties of disorder leading to its use in the computer science security field. In this paper, a comprehensive study of its topological behavior is proposed. It is stated that, in addition to being chaotic as defined in the Devaney's formulation, this tool possesses the property of topological mixing. Additionally, its level of sensibility, expansivity, and topological entropy are evaluated. All of these properties lead to a complete unpredictable behavior for the chaotic iterations. As it only manipulates binary digits or integers, we show that it is possible to use it to produce truly chaotic computer programs. As an application example, a truly chaotic hash function is proposed in two versions. In the second version, an artificial neural network is used, which can be stated as chaotic according to Devaney
B_c meson rare decays in the light-cone quark model
We investigate the rare decays
and in the framework of the
light-cone quark model (LCQM). The transition form factors are calculated in
the space-like region and then analytically continued to the time-like region
via exponential parametrization. The branching ratios and longitudinal lepton
polarization asymmetries (LPAs) for the two decays are given and compared with
each other. The results are helpful to investigating the structure of
meson and to testing the unitarity of CKM quark mixing matrix. All these
results can be tested in the future experiments at the LHC.Comment: 9 pages, 11 figures, version accepted for publication in EPJ
Neutrino Masses with "Zero Sum" Condition:
It is well known that the neutrino mass matrix contains more parameters than
experimentalists can hope to measure in the foreseeable future even if we
impose CP invariance. Thus, various authors have proposed ansatzes to restrict
the form of the neutrino mass matrix further. Here we propose that ; this ``zero sum'' condition can occur in certain
class of models, such as models whose neutrino mass matrix can be expressed as
commutator of two matrices. With this condition, the absolute neutrino mass can
be obtained in terms of the mass-squared differences. When combined with the
accumulated experimental data this condition predicts two types of mass
hierarchies, with one of them characterized by eV, and the other by eV and eV. The mass ranges
predicted is just below the cosmological upper bound of 0.23 eV from recent
WMAP data and can be probed in the near future. We also point out some
implications for direct laboratory measurement of neutrino masses, and the
neutrino mass matrix.Comment: Latex 12 pages. No figures. New references adde
Measurement of the top pair production cross section in 8 TeV proton-proton collisions using kinematic information in the lepton plus jets final state with ATLAS
A measurement is presented of the inclusive production
cross-section in collisions at a center-of-mass energy of TeV
using data collected by the ATLAS detector at the CERN Large Hadron Collider.
The measurement was performed in the lepton+jets final state using a data set
corresponding to an integrated luminosity of 20.3 fb. The cross-section
was obtained using a likelihood discriminant fit and -jet identification was
used to improve the signal-to-background ratio. The inclusive
production cross-section was measured to be
pb assuming a top-quark mass of 172.5 GeV, in good agreement with the
theoretical prediction of pb. The production cross-section in the fiducial region
determined by the detector acceptance is also reported.Comment: Published version, 19 pages plus author list (35 pages total), 3
figures, 2 tables, all figures including auxiliary figures are available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2013-06
Cavity-enhanced direct frequency comb spectroscopy
Cavity-enhanced direct frequency comb spectroscopy combines broad spectral
bandwidth, high spectral resolution, precise frequency calibration, and
ultrahigh detection sensitivity, all in one experimental platform based on an
optical frequency comb interacting with a high-finesse optical cavity. Precise
control of the optical frequency comb allows highly efficient, coherent
coupling of individual comb components with corresponding resonant modes of the
high-finesse cavity. The long cavity lifetime dramatically enhances the
effective interaction between the light field and intracavity matter,
increasing the sensitivity for measurement of optical losses by a factor that
is on the order of the cavity finesse. The use of low-dispersion mirrors
permits almost the entire spectral bandwidth of the frequency comb to be
employed for detection, covering a range of ~10% of the actual optical
frequency. The light transmitted from the cavity is spectrally resolved to
provide a multitude of detection channels with spectral resolutions ranging
from a several gigahertz to hundreds of kilohertz. In this review we will
discuss the principle of cavity-enhanced direct frequency comb spectroscopy and
the various implementations of such systems. In particular, we discuss several
types of UV, optical, and IR frequency comb sources and optical cavity designs
that can be used for specific spectroscopic applications. We present several
cavity-comb coupling methods to take advantage of the broad spectral bandwidth
and narrow spectral components of a frequency comb. Finally, we present a
series of experimental measurements on trace gas detections, human breath
analysis, and characterization of cold molecular beams.Comment: 36 pages, 27 figure
- …