401 research outputs found

    An unsymmetric 8-node hexahedral element with high distortion tolerance

    Get PDF
    Among all 3D 8-node hexahedral solid elements in current finite element library, the ‘best’ one can produce good results for bending problems using coarse regular meshes. However, once the mesh is distorted, the accuracy will drop dramatically. And how to solve this problem is still a challenge that remains outstanding. This paper develops an 8-node, 24-DOF (three conventional DOFs per node) hexahedral element based on the virtual work principle, in which two different sets of displacement fields are employed simultaneously to formulate an unsymmetric element stiffness matrix. The first set simply utilizes the formulations of the traditional 8-node trilinear isoparametric element, while the second set mainly employs the analytical trial functions in terms of 3D oblique coordinates (R, S, T). The resulting element, denoted by US-ATFH8, contains no adjustable factor and can be used for both isotropic and anisotropic cases. Numerical examples show it can strictly pass both the first-order (constant stress/strain) patch test and the second-order patch test for pure bending, remove the volume locking, and provide the invariance for coordinate rotation. Especially, it is insensitive to various severe mesh distortions

    Mesoscale modeling and simulation of microstructure evolution during dynamic recrystallization of a Ni-based superalloy

    Get PDF
    Microstructural evolution and plastic flow characteristics of a Ni-based superalloy were investigated using a simulative model that couples the basic metallurgical principle of dynamic recrystallization (DRX) with the twodimensional (2D) cellular automaton (CA). Variation of dislocation density with local strain of deformation is considered for accurate determination of the microstructural evolution during DRX. The grain topography, the grain size and the recrystallized fraction can be well predicted by using the developed CA model, which enables to the establishment of the relationship between the flow stress, dislocation density, recrystallized fraction volume, recrystallized grain size and the thermomechanical parameters

    Hydrogen bond induced change of geometry and crystallized form of copper(II) complexes: syntheses and crystal structure of complexes with Schiff-base ligands containing two imidazolyl groups

    Get PDF
    Copper(II) complexes with the Schiff base methylbis[3-(5-methylimidazol-4-ylmethyleneimino)propyl]amine (BDPA), [Cu(BDPA)][ClO4](2).H2O 1 and [Cu(BDPA)][PF6](2) 2, and with a deprotonated Schiff base ligand [H2BIPO=1,3-bis[(5-methylimidazol-4-ylmethyleneimino)propan-2-ol], {[Cu(HBIPO)]ClO4.H2O}(n) 3 and 4, have been prepared. Single-crystal structures show that 1 adopts a distorted square-pyramidal geometry with the basal plane occupied by an imidazole nitrogen, two imines and one amino nitrogen atom and the apical position by another nitrogen atom from BDPA. 2 adopts a distorted trigonal-bipyramidal geometry with two imidazole nitrogen atoms at axial positions. Both 3 and 4 adopt distorted square-pyramidal geometry with four nitrogen atoms from HBIPO in the basal plane and the apical position occupied by a deprotonated imidazole nitrogen atom from an adjacent [Cu(HBIPO)] unit, resulting in polynuclear complexes. The differences in geometry and crystallization pathway between 1 and 2, and 3 and 4, are discussed based on the crystal structures, indicating that hydrogen bonding to the basal plane imidazole group plays an important role both in the change of geometry and crystallization form of the copper(II) complexes

    Synthesis and Characterization of ZnO Nanorods and Nanodisks from Zinc Chloride Aqueous Solution

    Get PDF
    ZnO nanorods and nanodisks were synthesized by solution process using zinc chloride as starting material. The morphology of ZnO crystal changed greatly depending on the concentrations of Zn2+ion and ethylene glycohol (EG) additive in the solution. The effect of thermal treatment on the morphology was investigated. Photocatalytic activities of plate-like Zn5(OH)8Cl2 · H2O and rod-like ZnO were characterized. About 18% of 1 ppm NO could be continuously removed by ZnO particles under UV light irradiation

    A Glutathione Peroxidase, Intracellular Peptidases and the TOR Complexes Regulate Peptide Transporter PEPT-1 in C. elegans

    Get PDF
    The intestinal peptide transporter PEPT-1 in Caenorhabditis elegans is a rheogenic H+-dependent carrier responsible for the absorption of di- and tripeptides. Transporter-deficient pept-1(lg601) worms are characterized by impairments in growth, development and reproduction and develop a severe obesity like phenotype. The transport function of PEPT-1 as well as the influx of free fatty acids was shown to be dependent on the membrane potential and on the intracellular pH homeostasis, both of which are regulated by the sodium-proton exchanger NHX-2. Since many membrane proteins commonly function as complexes, there could be proteins that possibly modulate PEPT-1 expression and function. A systematic RNAi screening of 162 genes that are exclusively expressed in the intestine combined with a functional transport assay revealed four genes with homologues existing in mammals as predicted PEPT-1 modulators. While silencing of a glutathione peroxidase surprisingly caused an increase in PEPT-1 transport function, silencing of the ER to Golgi cargo transport protein and of two cytosolic peptidases reduced PEPT-1 transport activity and this even corresponded with lower PEPT-1 protein levels. These modifications of PEPT-1 function by gene silencing of homologous genes were also found to be conserved in the human epithelial cell line Caco-2/TC7 cells. Peptidase inhibition, amino acid supplementation and RNAi silencing of targets of rapamycin (TOR) components in C. elegans supports evidence that intracellular peptide hydrolysis and amino acid concentration are a part of a sensing system that controls PEPT-1 expression and function and that involves the TOR complexes TORC1 and TORC2

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Silencing Inhibits Cre-Mediated Recombination of the Z/AP and Z/EG Reporters in Adult Cells

    Get PDF
    BACKGROUND: The Cre-loxP system has been used to enable tissue specific activation, inactivation and mutation of many genes in vivo and has thereby greatly facilitated the genetic dissection of several cellular and developmental processes. In such studies, Cre-reporter strains, which carry a Cre-activated marker gene, are frequently utilized to validate the expression profile of Cre transgenes, to act as a surrogate marker for excision of a second allele, and to irreversibly label cells for lineage tracing experiments. PRINCIPAL FINDINGS: We have studied three commonly used Cre-reporter strains, Z/AP, Z/EG and R26R-EYFP and have demonstrated that although each reporter can be reliably activated by Cre during early development, exposure to Cre in adult hematopoietic cells results in a much lower frequency of marker-positive cells in the Z/AP or Z/EG strains than in the R26R-EYFP strain. In marker negative cells derived from the Z/AP and Z/EG strains, the transgenic promoter is methylated and Cre-mediated recombination of the locus is inhibited. CONCLUSIONS: These results show that the efficiency of Cre-mediated recombination is not only dependent on the genomic context of a given loxP-flanked sequence, but also on stochastic epigenetic mechanisms underlying transgene variegation. Furthermore, our data highlights the potential shortcomings of utilizing the Z/AP and Z/EG reporters as surrogate markers of excision or in lineage tracing experiments

    Attitudes on the donation of human embryos for stem cell research among Chinese IVF patients and students

    Get PDF
    Bioethical debates on the use of human embryos and oocytes for stem cell research have often been criticized for the lack of empirical insights into the perceptions and experiences of the women and couples who are asked to donate these tissues in the IVF clinic. Empirical studies that have investigated the attitudes of IVF patients and citizens on the (potential) donation of their embryos and oocytes have been scarce and have focused predominantly on the situation in Europe and Australia. This article examines the viewpoints on the donation of embryos for stem cell research among IVF patients and students in China. Research into the perceptions of patients is based on in-depth interviews with IVF patients and IVF clinicians. Research into the attitudes of students is based on a quantitative survey study (n=427). The empirical findings in this paper indicate that perceptions of the donation of human embryos for stem cell research in China are far more diverse and complex than has commonly been suggested. Claims that ethical concerns regarding the donation and use of embryos and oocytes for stem cell research are typical for Western societies but absent in China cannot be upheld. The article shows that research into the situated perceptions and cultural specificities of human tissue donation can play a crucial role in the deconstruction of politicized bioethical argumentation and the (often ill-informed) assumptions about “others” that underlie socio-ethical debates on the moral dilemmas of technology developments in the life sciences

    The Making of a Queen: TOR Pathway Is a Key Player in Diphenic Caste Development

    Get PDF
    Honey bees (Apis mellifera) provide a principal example of diphenic development. Excess feeding of female larvae results in queens (large reproductives). Moderate diet yields workers (small helpers). The signaling pathway that links provisioning to female developmental fate is not understood, yet we reasoned that it could include TOR (target of rapamycin), a nutrient- and energy-sensing kinase that controls organismal growth.Here, the role of Apis mellifera TOR (amTOR) in caste determination is examined by rapamycin/FK506 pharmacology and RNA interference (RNAi) gene knockdown. We show that in queen-destined larvae, the TOR inhibitor rapamycin induces the development of worker characters that are blocked by the antagonist FK506. Further, queen fate is associated with elevated activity of the Apis mellifera TOR encoding gene, amTOR, and amTOR gene knockdown blocks queen fate and results in individuals with worker morphology.A much-studied insect dimorphism, thereby, can be governed by the TOR pathway. Our results present the first evidence for a role of TOR in diphenic development, and suggest that adoption of this ancestral nutrient-sensing cascade is one evolutionary pathway for morphological caste differentiation in social insects
    corecore