264 research outputs found

    Ocean temperature impact on ice shelf extent in the eastern Antarctic Peninsula

    Get PDF
    The recent thinning and retreat of Antarctic ice shelves has been attributed to both atmosphere and ocean warming. However, the lack of continuous, multi-year direct observations as well as limitations of climate and ice shelf models prevent a precise assessment on how the ocean forcing affects the fluctuations of a grounded and floating ice cap. Here we show that a +0.3–1.5 °C increase in subsurface ocean temperature (50–400 m) in the northeastern Antarctic Peninsula has driven to major collapse and recession of the regional ice shelf during both the instrumental period and the last 9000 years. Our projections following the representative concentration pathway 8.5 emission scenario from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change reveal a +0.3 °C subsurface ocean temperature warming within the coming decades that will undoubtedly accelerate ice shelf melting, including the southernmost sector of the eastern Antarctic Peninsula.J.E. and C.E. are financially supported by the Spanish Ministerio de Economia y Competitividad (CTM2014–60451-C2–1-P) co-funded by the European Union through FEDER funds. J.-H.K. was supported by the grants funded by the Korea Polar Research Institute (KOPRI, NRF-2015M1A5A1037243 and PE19010). S.S. and J.S.S.D. are supported by the Netherlands Earth System Science Center funded by the Dutch Ministry of Education and Science (OCW). G.S. and D.S. were funded by the EMBRACE project (European Union’s FP7, Grant Number: 282672). We also acknowledge funding from the French ANR CLIMICE, ERC ICEPROXY 203441, ESF PolarClimate, HOLOCLIP 625 and FP7 Past4Future as well as the Netherlands Organisation of Scientific Research (NWO) through a VICI grant to S.S. The HOLOCLIP Project, a joint research project of ESF PolarCLIMATE programme, is funded by national contributions from Italy, France, Germany, Spain, Netherlands, Belgium and the United Kingdom. The research leading to these results has also received support from the European Union’s Seventh Framework programme (FP7/2007–2013) under Grant Agreement No. 243908, “Past4Future, Climate change – Learning from the past climate”

    Compilation of Southern Ocean sea-ice records covering the last glacial-interglacial cycle (12–130 ka)

    Get PDF
    Antarctic sea ice forms a critical part of the Southern Ocean and global climate system. The behaviour of Antarctic sea ice throughout the last glacial-interglacial (G-IG) cycle (12 000–130 000 years) allows us to investigate the interactions between sea ice and climate under a large range of mean climate states. Understanding both temporal and spatial variations in Antarctic sea ice across a G-IG cycle is crucial to a better understanding of the G-IG regulation of atmospheric CO2, ocean circulation, nutrient cycling and productivity. This study presents 28 published qualitative and quantitative estimates of G-IG sea ice from 24 marine sediment cores and an Antarctic ice core. Sea ice is reconstructed from the sediment core records using diatom assemblages and from the ice core record using sea-salt sodium flux. Whilst all regions of the Southern Ocean display the same overall pattern in G-IG sea-ice variations, the magnitudes and timings vary between regions. Sea-ice cover is most sensitive to changing climate in the regions of high sea-ice outflow from the Weddell Sea and Ross Sea gyres, as indicated by the greatest magnitude changes in sea ice in these areas. In contrast the Scotia Sea sea-ice cover is much more resilient to moderate climatic warming, likely due to the meltwater stratification from high iceberg flux through “iceberg alley” helping to sustain high sea-ice cover outside of full glacial intervals. The differing sensitivities of sea ice to climatic shifts between different regions of the Southern Ocean has important implications for the spatial pattern of nutrient supply and primary productivity, which subsequently impact carbon uptake and atmospheric CO2 concentrations changes across a G-IG cycle

    Sea surface temperature in the Indian sector of the Southern Ocean over the Late Glacial and Holocene

    Get PDF
    Centennial- and millennial-scale variability of Southern Ocean temperature over the Holocene is poorly known, due to both short instrumental records and sparsely distributed high-resolution temperature reconstructions, with evidence for past temperature variations in the region coming mainly from ice core records. Here we present a high-resolution (similar to 60 year), diatom-based sea surface temperature (SST) reconstruction from the western Indian sector of the Southern Ocean that spans the interval 14.2 to 1.0 ka (calibrated kiloyears before present). During the late deglaciation, the new SST record shows cool temperatures at 14.2-12.9 ka and gradual warming between 12.9 and 11.6 ka in phase with atmospheric temperature evolution. This supports the evolution of the Southern Ocean SST during the deglaciation being linked with a complex combination of processes and drivers associated with reorganisations of atmospheric and oceanic circulation patterns. Specifically, we suggest that Southern Ocean surface warming coincided, within the dating uncertainties, with the reconstructed slowdown of the Atlantic Meridional Overturning Circulation (AMOC), rising atmospheric CO2 levels, changes in the southern westerly winds and enhanced upwelling. During the Holocene the record shows warm and stable temperatures from 11.6 to 8.7 ka followed by a slight cooling and greater variability from 8.7 to 1 ka, with a quasi-periodic variability of 200-260 years identified by spectral analysis. We suggest that the increased variability during the mid- to late Holocene reflects the establishment of centennial variability in SST connected with changes in the high-latitude atmospheric circulation and Southern Ocean convection.Peer reviewe

    Learning from the past : Impact of the Arctic Oscillation on sea ice and marine productivity off northwest Greenland over the last 9,000 years

    Get PDF
    Climate warming is rapidly reshaping the Arctic cryosphere and ocean conditions, with consequences for sea ice and pelagic productivity patterns affecting the entire marine food web. To predict how ongoing changes will impact Arctic marine ecosystems, concerted effort from various disciplines is required. Here, we contribute multi-decadal reconstructions of changes in diatom production and sea-ice conditions in relation to Holocene climate and ocean conditions off northwest Greenland. Our multiproxy study includes diatoms, sea-ice biomarkers (IP(25)and HBI III) and geochemical tracers (TOC [total organic carbon], TOC:TN [total nitrogen], delta C-13, delta N-15) from a sediment core record spanning the last c. 9,000 years. Our results suggest that the balance between the outflow of polar water from the Arctic, and input of Atlantic water from the Irminger Current into the West Greenland Current is a key factor in controlling sea-ice conditions, and both diatom phenology and production in northeastern Baffin Bay. Our proxy record notably shows that changes in sea-surface conditions initially forced by Neoglacial cooling were dynamically amplified by the shift in the dominant phase of the Arctic Oscillation (AO) mode that occurred at c. 3,000 yr BP, and caused drastic changes in community composition and a decline in diatom production at the study site. In the future, with projected dominant-positive AO conditions favored by Arctic warming, increased water column stratification may counteract the positive effect of a longer open-water growth season and negatively impact diatom production.Peer reviewe

    Marine diatoms record Late Holocene regime shifts in the Pikialasorsuaq ecosystem

    Get PDF
    Abstract The Pikialasorsuaq (North Water polynya) is an area of local and global cultural and ecological significance. However, over the last decades, the region has been subject to rapid warming, and in some recent years, the seasonal ice arch that has historically defined the polynya's northern boundary has failed to form. Both factors are deemed to alter the polynya's ecosystem functioning. To understand how climate‐induced changes to the Pikialasorsuaq impact the basis of the marine food web, we explored diatom community‐level responses to changing conditions, from a sediment core spanning the last 3800 years. Four metrics were used: total diatom concentrations, taxonomic composition, mean size, and diversity. Generalized additive model statistics highlight significant changes at ca. 2400, 2050, 1550, 1200, and 130 cal years BP, all coeval with known transitions between colder and warmer intervals of the Late Holocene, and regime shifts in the Pikialasorsuaq. Notably, a weaker/contracted polynya during the Roman Warm Period and Medieval Climate Anomaly caused the diatom community to reorganize via shifts in species composition, with the presence of larger taxa but lower diversity, and significantly reduced export production. This study underlines the high sensitivity of primary producers to changes in the polynya dynamics and illustrates that the strong pulse of early spring cryopelagic diatoms that makes the Pikialasorsuaq exceptionally productive may be jeopardized by rapid warming and associated Nares Strait ice arch destabilization. Future alterations to the phenology of primary producers may disproportionately impact higher trophic levels and keystone species in this region, with implications for Indigenous Peoples and global diversity

    Sea ice diatom contributions to Holocene nutrient utilization in East Antarctica

    Get PDF
    Combined high-resolution Holocene ÎŽ30Sidiat and ÎŽ13Cdiat paleorecords are presented from theSeasonal Ice Zone, East Antarctica. Both data sets reïŹ‚ect periods of increased nutrient utilization by diatomsduring the Hypsithermal period (circa 7800 to 3500 calendar years (cal years) B.P.), coincident with a higherabundance of open water diatom species (Fragilariopsis kerguelensis), increased biogenic silica productivity(%BSi), and higher regional summer temperatures. The Neoglacial period (after circa 3500 cal years B.P.) isreïŹ‚ected by an increase in sea ice indicative species (Fragilariopsis curta and Fragilariopsis cylindrus,upto50%) along with a decrease in %BSi and ÎŽ13Cdiat(< 18‰ to 23‰). However, over this period, ÎŽ30Sidiatdata show an increasing trend, to some of the highest values in the Holocene record (average of +0.43‰).Competing hypotheses are discussed to account for the decoupling trend in utilization proxies including ironfertilization, species-dependent fractionation effects, and diatom habitats. Based on mass balance calculations,we highlight that diatom species derived from the semi-enclosed sea ice environment may have a confoundingeffect upon ÎŽ30Sidowncorecompositions of the seasonal sea ice zone. A diatom composition, with approximately28% of biogenic silica derived from the sea ice environment (diat-SI) can account for the increased averagecompo sition of ÎŽ30Sidiatduring the Neoglacial. These data highlight the signiïŹcant role sea ice diatoms can playwith relation to their export in sediment records, which has implications on productivity reconstructions fromthe seasonal ice zone
    • 

    corecore