10 research outputs found

    Expression microdissection isolation of enriched cell populations from archival brain tissue

    Get PDF
    BACKGROUND: Laser capture microdissection (LCM) is an established technique for the procurement of enriched cell populations that can undergo further downstream analysis, although it does have limitations. Expression microdissection (xMD) is a new technique that begins to address these pitfalls, such as operator dependence and contamination. NEW METHOD: xMD utilises immunohistochemistry in conjunction with a chromogen to isolate specific cell types by extending the fundamental principles of LCM to create an operator-independent method for the procurement of specific CNS cell types. RESULTS: We report how xMD enables the isolation of specific cell populations, namely neurones and astrocytes, from rat formalin fixed-paraffin embedded (FFPE) tissue. Subsequent reverse transcriptase-polymerase chain reaction (RT-PCR) analysis confirms the enrichment of these specific populations. RIN values after xMD indicate samples are sufficient to carry out further analysis. COMPARISON WITH EXISTING METHOD: xMD offers a rapid method of isolating specific CNS cell types without the need for identification by an operator, reducing the amount of unintentional contamination caused by operator error, whilst also significantly reducing the time required by the current basic LCM technique. CONCLUSIONS: xMD is a superior method for the procurement of enriched cell populations from post-mortem tissue, which can be utilised to create transcriptome profiles, aiding our understanding of the contribution of these cells to a range of neurological diseases. xMD also addresses the issues associated with LCM, such as reliance on an operator to identify target cells, which can cause contamination, as well as addressing the time consuming nature of LCM

    Transcriptomic analysis of the human placenta reveals trophoblast dysfunction and augmented Wnt signalling associated with spontaneous preterm birth

    Get PDF
    Preterm birth (PTB) is the leading cause of death in under-five children. Worldwide, annually, over 15 million babies are born preterm and 1 million of them die. The triggers and mechanisms of spontaneous PTB remain largely unknown. Most current therapies are ineffective and there is a paucity of reliable predictive biomarkers. Understanding the molecular mechanisms of spontaneous PTB is crucial for developing better diagnostics and therapeutics. To address this need, we conducted RNA-seq transcriptomic analysis, qRT-PCR and ELISA on fresh placental villous tissue from 20 spontaneous preterm and 20 spontaneous term deliveries, to identify genes and signalling pathways involved in the pathogenesis of PTB. Our differential gene expression, gene ontology and pathway analysis revealed several dysregulated genes (including OCLN, OPTN, KRT7, WNT7A, RSPO4, BAMBI, NFATC4, SLC6A13, SLC6A17, SLC26A8 and KLF8) associated with altered trophoblast functions. We identified dysregulated Wnt, oxytocin and cellular senescence signalling pathways in preterm placentas, where augmented Wnt signalling could play a pivotal role in the pathogenesis of PTB due to its diverse biological functions. We also reported two novel targets (ITPR2 and MYLK2) in the oxytocin signalling pathways for further study. Through bioinformatics analysis on DEGs, we identified four key miRNAs, - miR-524-5p, miR-520d-5p, miR-15a-5p and miR-424-5p - which were significantly downregulated in preterm placentas. These miRNAs may have regulatory roles in the aberrant gene expressions that we have observed in preterm placentas. We provide fresh molecular insight into the pathogenesis of spontaneous PTB which may drive further studies to develop new predictive biomarkers and therapeutics

    periscope: sub-genomic RNA identification in SARS-CoV-2 genomic sequencing data

    Get PDF
    We have developed periscope, a tool for the detection and quantification of sub-genomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed “sub-genomic RNAs”. sgRNAs are produced through discontinuous transcription which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L which is located in the 5’ UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5’ end of all sgRNA. We applied periscope to 1,155 SARS-CoV-2 genomes from Sheffield, UK and validated our findings using orthogonal datasets and in vitro cell systems. Using a simple local alignment to detect reads which contain the leader sequence we were able to identify and quantify reads arising from canonical and non-canonical sgRNA. We were able to detect all canonical sgRNAs at expected abundances, with the exception of ORF10. A number of recurrent non-canonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/− cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing datasets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Diagnosis of SARS-CoV-2 infection with LamPORE, a high-throughput platform combining loop-mediated isothermal amplification and nanopore sequencing

    Get PDF
    LamPORE is a novel diagnostic platform for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA combining loop-mediated isothermal amplification with nanopore sequencing, which could potentially be used to analyze thousands of samples per day on a single instrument. We evaluated the performance of LamPORE against reverse transcriptase PCR (RT-PCR) using RNA extracted from spiked respiratory samples and stored nose and throat swabs collected at two UK hospitals. The limit of detection of LamPORE was 10 genome copies/μl of extracted RNA, which is above the limit achievable by RT-PCR, but was not associated with a significant reduction of sensitivity in clinical samples. Positive clinical specimens came mostly from patients with acute symptomatic infection, and among them, LamPORE had a diagnostic sensitivity of 99.1% (226/228; 95% confidence interval [CI], 96.9% to 99.9%). Among negative clinical specimens, including 153 with other respiratory pathogens detected, LamPORE had a diagnostic specificity of 99.6% (278/279; 98.0% to 100.0%). Overall, 1.4% (7/514; 0.5% to 2.9%) of samples produced an indeterminate result on first testing, and repeat LamPORE testing on the same RNA extract had a reproducibility of 96.8% (478/494; 94.8% to 98.1%). LamPORE has a similar performance as RT-PCR for the diagnosis of SARS-CoV-2 infection in symptomatic patients and offers a promising approach to high-throughput testing

    Diagnosis of SARS-CoV-2 infection with LamPORE, a high-throughput platform combining loop-mediated isothermal amplification and nanopore sequencing

    Get PDF
    LamPORE is a novel diagnostic platform for the detection of SARS-CoV-2 RNA that combines loop-mediated isothermal amplification with nanopore sequencing, which could potentially be used to analyse thousands of samples per day on a single instrument. We evaluated the performance of LamPORE against RT-PCR using RNA extracted from spiked respiratory samples and from stored nose and throat swabs collected at two UK hospitals. The limit of detection of LamPORE was 7-10 genome copies/µl of extracted RNA. This is above the limit achievable by RT-PCR but was not associated with a significant reduction of sensitivity in clinical samples. Positive clinical specimens came mostly from patients with acute symptomatic infection, and among these LamPORE had a diagnostic sensitivity of 99.1% (226/228 [95% CI 96.9–99.9%]). Among negative clinical specimens, including 153 with other respiratory pathogens detected, LamPORE had a diagnostic specificity of 99.6% (278/279 [98.0–100.0%]). Overall, 1.4% (7/514 [0.5–2.9]) of samples produced an indeterminate result on first testing, and repeat LamPORE testing on the same RNA extract had a reproducibility of 96.8% (478/494 [94.8–98.1]). This indicates that LamPORE has a similar performance to RT-PCR for the diagnosis of SARS-CoV-2 infection in symptomatic patients, and offers a promising approach to high-throughput testing

    In silico evolutionary developmental neurobiology and the origin of natural language

    No full text
    Abstract. It is justified to assume that part of our genetic endowment contributes to our language skills, yet it is impossible to tell at this moment exactly how genes affect the language faculty. We complement experimental biological studies by an in silico approach in that we simulate the evolution of neuronal networks under selection for language-related skills. At the heart of this project is the Evolutionary Neurogenetic Algorithm (ENGA) that is deliberately biomimetic. The design of the system was inspired by important biological phenomena such as brain ontogenesis, neuron morphologies, and indirect genetic encoding. Neuronal networks were selected and were allowed to reproduce as a function of their performance in the given task. The selected neuronal networks in all scenarios were able to solve the communication problem they had to face. The most striking feature of the model is that it works with highly indirect genetic encoding—just as brains do.
    corecore