62 research outputs found

    Dataset associated with "Artefactual depiction of predator–prey trophic linkages in global soils"

    Get PDF
    This database contains results from an exploratory literature search (carried out over May-July 2020) to detect the trophic linkages that departed from an initial set of 36 common soil-dwelling invertebrate taxa (i.e., in the capacity of either predator or prey items). It consists of a non-exhaustive list of macro-, meso- and micro-fauna which did not necessarily include all common soil fauna (e.g., Amphipoda). For each literature record, we logged the resource and consumer organisms for each trophic linkage. For generalist (i.e., polyphagous) predators that foraged within/on soil substrates, we logged all trophic linkages that were outlined in each literature record (i.e., involving other organisms beyond the initial set of 36 taxa). Taxa were identified either at the taxonomic hierarchy of phylum, sub-class or order and comprised a diverse set of common, globally-distributed soil-foraging biota.Soil invertebrates contribute to multiple ecosystem services, including pest control, nutrient cycling, and soil structural regulation, yet trophic interactions that determine their diversity and activity in soils remain critically understudied. Here, we systematically review literature (1966–2020) on feeding habits of soil arthropods and macrofauna and summarize empirically studied predator–prey linkages across ecosystem types, geographies and taxa. Out of 522 unique predators and 372 prey organisms (constituting 1947 predator–prey linkages), the vast majority (> 75%) are only covered in a single study. We report a mean of just 3.0 ± 4.7 documented linkages per organism, with pronounced taxonomic biases. In general, model organisms and crop pests (generally Insecta) are well-studied, while important soil-dwelling predators, fungivores and detritivores (e.g., Collembola, Chilopoda and Malacostraca) remain largely ignored. We argue that broader food-web based research approaches, considering multiple linkages per organism and targeting neglected taxa, are needed to inform science-driven management of soil communities and associated ecosystem services

    Phytoplasma Infection of a Tropical Root Crop Triggers Bottom-Up Cascades by Favoring Generalist Over Specialist Herbivores

    Get PDF
    Global interest on plant-microbe-insect interactions is rapidly growing, revealing the multiple ways in which microorganisms mediate plant-herbivore interactions. Phytopathogens regularly alter whole repertoires of plant phenotypic traits, and bring about shifts in key chemical or morphological characteristics of plant hosts. Pathogens can also cause cascading effects on higher trophic levels, and eventually shape entire plant-associated arthropod communities. We tested the hypothesis that a Candidatus Phytoplasma causing cassava witches’ broom (CWB) on cassava (Manihot esculenta Grantz) is altering species composition of invasive herbivores and their associated parasitic hymenopterans. We conducted observational studies in cassava fields in eastern Cambodia to assess the effect of CWB infection on abundance of specialist and generalist mealybugs (Homoptera: Pseudococcidae), and associated primary and hyper-parasitoid species. CWB infection positively affects overall mealybug abundance and species richness at a plant- and field-level, and disproportionately favors a generalist mealybug over a specialist feeder. CWB phytoplasma infection led to increased parasitoid richness and diversity, with richness of ‘comparative’ specialist taxa being the most significantly affected. Parasitism rate did not differ among infected and uninfected plants, and mealybug host suppression was not impacted. CWB phytoplasma modifies host plant quality for sap-feeding homopterans, differentially affects success rates of two invasive species, and generates niche opportunities for higher trophic orders. By doing so, a Candidatus phytoplasma affects broader food web structure and functioning, and assumes the role of an ecosystem engineer. Our work unveils key facets of phytoplasma ecology, and sheds light upon complex multi-trophic interactions mediated by an emerging phytopathogen. These findings have further implications for invasion ecology and management

    Hoverflies provide pollination and biological pest control in greenhouse-grown horticultural crops

    Get PDF
    Beneficial insects provide pollination and biological control in natural and man-made settings. Those ecosystem services (ES) are especially important for high-value fruits and vegetables, including those grown under greenhouse conditions. The hoverfly Eupeodes corollae (Diptera: Syrphidae) delivers both ES, given that its larvae prey upon aphid pests and its adults pollinate crops. In this study, we investigated this dual role of E. corollae in three insect-pollinated and aphid-affected horticultural crops i.e., tomato, melon and strawberry within greenhouses in Hebei province (China). Augmentative releases of E. corollae increased fruit set and fruit weight of all three crops, and affected population dynamics of the cotton aphid Aphis gossypii (Hemiptera: Aphididae). On melon and strawberry, E. corollae suppressed A. gossypii populations by 54-99% and 50-70% respectively. In tomato, weekly releases of 240 E. corollae individuals/100 m2led to 95% fruit set. Meanwhile, releases of 160 hoverfly individuals per 100 m2led to 100% fruit set in melon. Also, at hoverfly/aphid release rates of 1:500 in spring and 1:150 in autumn, aphid populations were reduced by more than 95% on melon. Lastly, on strawberry, optimum levels of pollination and aphid biological control were attained at E. corollae release rates of 640 individuals/100 m2. Overall, our work shows how augmentative releases of laboratory-reared hoverflies E. corollae can enhance yields of multiple horticultural crops while securing effective, non-chemical control of resident aphid pests

    Island and Mountain Ecosystems as Testbeds for Biological Control in the Anthropocene

    Get PDF
    For centuries, islands and mountains have incited the interest of naturalists, evolutionary biologists and ecologists. Islands have been the cradle for biogeography and speciation theories, while mountain ranges have informed how population adaptation to thermal floors shapes the distribution of species globally. Islands of varying size and mountains’ altitudinal ranges constitute unique “natural laboratories” where one can investigate the effects of species loss or global warming on ecosystem service delivery. Although invertebrate pollination or seed dispersal processes are steadily being examined, biological control research is lagging. While observations of a wider niche breadth among insect pollinators in small (i.e., species-poor) islands or at high (i.e., colder) altitudes likely also hold for biological control agents, such remains to be examined. In this Perspective piece, we draw on published datasets to show that island size alone does not explain biological control outcomes. Instead, one needs to account for species’ functional traits, habitat heterogeneity, host community make-up, phenology, site history or even anthropogenic forces. Meanwhile, data from mountain ranges show how parasitism rates of Noctuid moths and Tephritid fruit flies exhibit species- and context-dependent shifts with altitude. Nevertheless, future empirical work in mountain settings could clarify the thermal niche space of individual natural enemy taxa and overall thermal resilience of biological control. We further discuss how global databases can be screened, while ecological theories can be tested, and simulation models defined based upon observational or manipulative assays in either system. Doing so can yield unprecedented insights into the fate of biological control in the Anthropocene and inform ways to reinforce this vital ecosystem service under global environmental change scenarios.The development of this manuscript was funded by the Food and Agriculture Organization FAO through LOA/RAP/2021/57, executed by The University of Queensland. AS was supported by the "Ramon y Cajal" program (RYC2020029407-I), financed by the Spanish "Ministerio de Ciencia e Innovacion".info:eu-repo/semantics/publishedVersio

    Scientists' warning on climate change and insects

    Get PDF
    Climate warming is considered to be among the most serious of anthropogenic stresses to the environment, because it not only has direct effects on biodiversity, but it also exacerbates the harmful effects of other human-mediated threats. The associated consequences are potentially severe, particularly in terms of threats to species preservation, as well as in the preservation of an array of ecosystem services provided by biodiversity. Among the most affected groups of animals are insects—central components of many ecosystems—for which climate change has pervasive effects from individuals to communities. In this contribution to the scientists' warning series, we summarize the effect of the gradual global surface temperature increase on insects, in terms of physiology, behavior, phenology, distribution, and species interactions, as well as the effect of increased frequency and duration of extreme events such as hot and cold spells, fires, droughts, and floods on these parameters. We warn that, if no action is taken to better understand and reduce the action of climate change on insects, we will drastically reduce our ability to build a sustainable future based on healthy, functional ecosystems. We discuss perspectives on relevant ways to conserve insects in the face of climate change, and we offer several key recommendations on management approaches that can be adopted, on policies that should be pursued, and on the involvement of the general public in the protection effort

    Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

    Get PDF
    The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies

    Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control

    Full text link

    Worldwide decline of the entomofauna: a review of its drivers

    No full text
    Biodiversity of insects is threatened worldwide. Here, we present a comprehensive review of 73 historical reports of insect declines from across the globe, and systematically assess the underlying drivers. Our work reveals dramatic rates of decline that may lead to the extinction of 40% of the world's insect species over the next few decades. In terrestrial ecosystems, Lepidoptera, Hymenoptera and dung beetles (Coleoptera) appear to be the taxa most affected, whereas four major aquatic taxa (Odonata, Plecoptera, Trichoptera and Ephemeroptera) have already lost a considerable proportion of species. Affected insect groups not only include specialists that occupy particular ecological niches, but also many common and generalist species. Concurrently, the abundance of a small number of species is increasing; these are all adaptable, generalist species that are occupying the vacant niches left by the ones declining. Among aquatic insects, habitat and dietary generalists, and pollutant-tolerant species are replacing the large biodiversity losses experienced in waters within agricultural and urban settings. The main drivers of species declines appear to be in order of importance: i) habitat loss and conversion to intensive agriculture and urbanisation; ii) pollution, mainly that by synthetic pesticides and fertilisers; iii) biological factors, including pathogens and introduced species; and iv) climate change. The latter factor is particularly important in tropical regions, but only affects a minority of species in colder climes and mountain settings of temperate zones. A rethinking of current agricultural practices, in particular a serious reduction in pesticide usage and its substitution with more sustainable, ecologically-based practices, is urgently needed to slow or reverse current trends, allow the recovery of declining insect populations and safeguard the vital ecosystem services they provide. In addition, effective remediation technologies should be applied to clean polluted waters in both agricultural and urban environments

    Institutional Context of Pest Management Science in the Global South

    No full text
    The natural sciences are receiving increasing attention in the Global South. This timely development may help mitigate global change and quicken an envisioned food system transformation. Yet in order to resolve complex issues such as agrochemical pollution, science ideally proceeds along suitable trajectories within appropriate institutional contexts. Here, we employ a systematic literature review to map the nature of inquiry and institutional context of pest management science in 65 low- and middle-income countries published from 2010 to 2020. Despite large inter-country variability, any given country generates an average of 5.9 publications per annum (range 0–45.9) and individual nations such as Brazil, Kenya, Benin, Vietnam, and Turkey engage extensively in regional cooperation. International development partners are prominent scientific actors in West Africa but are commonly outpaced by national institutions and foreign academia in other regions. Transnational institutions such as the CGIAR represent a 1.4-fold higher share of studies on host plant resistance but lag in public interest science disciplines such as biological control. Despite high levels of scientific abstraction, research conducted jointly with development partners shows real yet marginal improvements in incorporating the multiple (social–ecological) layers of the farming system. Added emphasis on integrative system-level approaches and agroecological or biodiversity-driven measures can extend the reach of science to unlock transformative change

    Early-season host switching in Adelphocoris spp. (Hemiptera: Miridae) of differing host breadth.

    Get PDF
    The mirid bugs Adelphocoris suturalis (Jakovlev), Adelphocoris lineolatus (Goeze) and Adelphocoris fasciaticollis (Reuter) (Hemiptera: Miridae) are common pests of several agricultural crops. These three species have vastly different geographical distributions, phenologies and abundances, all of which are linked to their reliance on local plants. Previous work has shown notable differences in Adelphocoris spp. host use for overwintering. In this study, we assessed the extent to which each of the Adelphocoris spp. relies on some of its major overwinter hosts for spring development. Over the course of four consecutive years (2009-2012), we conducted population surveys on 77 different plant species from 39 families. During the spring, A. fasciaticollis used the broadest range of hosts, as it was found on 35 plant species, followed by A. suturalis (15 species) and A. lineolatus (7 species). Abundances of the species greatly differed between host plants, with A. fasciaticollis reaching the highest abundance on Chinese date (Ziziphus jujuba Mill.), whereas both A. suturalis and A. lineolatus preferred alfalfa (Medicago sativa L.). The host breadths of the three Adelphocoris spp. differed greatly between subsequent spring and winter seasons. The generalist species exhibited the least host fidelity, with A. suturalis and A. lineolatus using 8 of 22 and 4 of 12 overwinter host species for spring development, respectively. By contrast, the comparative specialist A. fasciaticollis relied on 9 of its 11 overwinter plants as early-season hosts. We highlight important seasonal changes in host breadth and interspecific differences in the extent of host switching behavior between the winter and spring seasons. These findings benefit our understanding of the evolutionary interactions between mirid bugs and their host plants and can be used to guide early-season population management
    • 

    corecore