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For centuries, islands and mountains have incited the interest of naturalists, evolutionary
biologists and ecologists. Islands have been the cradle for biogeography and speciation
theories, while mountain ranges have informed how population adaptation to thermal
floors shapes the distribution of species globally. Islands of varying size and mountains’
altitudinal ranges constitute unique “natural laboratories” where one can investigate
the effects of species loss or global warming on ecosystem service delivery. Although
invertebrate pollination or seed dispersal processes are steadily being examined,
biological control research is lagging. While observations of a wider niche breadth
among insect pollinators in small (i.e., species-poor) islands or at high (i.e., colder)
altitudes likely also hold for biological control agents, such remains to be examined.
In this Perspective piece, we draw on published datasets to show that island size
alone does not explain biological control outcomes. Instead, one needs to account for
species’ functional traits, habitat heterogeneity, host community make-up, phenology,
site history or even anthropogenic forces. Meanwhile, data from mountain ranges show
how parasitism rates of Noctuid moths and Tephritid fruit flies exhibit species- and
context-dependent shifts with altitude. Nevertheless, future empirical work in mountain
settings could clarify the thermal niche space of individual natural enemy taxa and
overall thermal resilience of biological control. We further discuss how global databases
can be screened, while ecological theories can be tested, and simulation models
defined based upon observational or manipulative assays in either system. Doing so
can yield unprecedented insights into the fate of biological control in the Anthropocene
and inform ways to reinforce this vital ecosystem service under global environmental
change scenarios.

Keywords: climate change, global warming, insect biodiversity loss, biological control, agroecology, island
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INTRODUCTION

Since the early 1800s, islands and mountain ranges have served
as model systems for nascent evolutionary and ecological
theories (Warren et al., 2015; Birks, 2019). Wallace’s and
Darwin’s observations on islands in the Pacific and Indomalaya
spawned revolutionary ideas on natural selection. Similarly,
von Humboldt’s landmark vertical stratification maps helped to
decipher the climate-based distribution patterns of biodiversity
(Schrodt et al., 2019). During the second half of the twentieth
century, interest was reinvigorated with the equilibrium theory
of island biogeography (ETIB; MacArthur and Wilson, 1967),
which led to a multitude of empirical and theoretical studies in
subsequent decades. Islands, representing facts of distribution
in their simplest form (Wallace, 1880), thus constitute “natural
laboratories” for ecology (Santos et al., 2016b). Each island offers
a uniquely replicated unit with varying species complements, as
defined by its size and geographical isolation (MacArthur and
Wilson, 1967). Similarly, interest in how altitudinal gradients
shape species distribution patterns has recently been rekindled
(Dangles et al., 2008; Peters et al., 2016; Moret et al., 2019), with
work confirming the role of temperature as a core determinant
in these processes (Peters et al., 2016; Steinbauer et al., 2018).
Research in either setting has historically centered on richness
metrics, often treating species as stand-alone entities rather
than constituent components of dynamic, interlinked networks
(Massol et al., 2017; Galiana et al., 2022). Only in recent years
have topics such as niche theory, trophic ecology or ecosystem
functioning found places within ETIB-inspired theorems or
mountain ecosystem science (Allouche et al., 2012; Rasmann
et al., 2014a; Warren et al., 2015; Peters et al., 2016; Massol et al.,
2017; Holt et al., 2020). So far, few have attempted to relate
community assemblage processes to ecosystem functioning in
these settings (Warren et al., 2015).

Both consumptive and non-consumptive ecological
interactions constitute the fabric of natural communities
and shape ecosystem services (ES), e.g., pollination or biological
control (Dainese et al., 2019; Guimarães, 2020). These interaction
networks are being rewired or even eliminated through global
warming or biodiversity loss (Valiente-Banuet et al., 2015; Bartley
et al., 2019). As the resulting impacts on insect-mediated ES
are complex, grave and likely irreversible (Decourtye et al.,
2019; Lehmann et al., 2020), it is challenging to predict them
through empirical work in simplified laboratory conditions or
“real-world” farm settings. Islands and mountain ecosystems,
however, are “systems of choice” for ES-related observational
studies, experimental trials, or further simulation modeling.
The isolated, simplified and poor biotas of islands make them
ideal settings to investigate the consequences of species loss,
and how these losses may cascade and affect ES. Meanwhile,
microclimate ranges along altitudinal gradients provide the
myriad of conditions required to improve our understanding
of the pervasive effects of global change on biodiversity.
Exploratory work has only recently started on invertebrate
pollination in island and mountain settings (Traveset et al., 2016;
Baumann et al., 2021), exposing a higher niche overlap within
the species-poor communities of small islands and elevated

altitudes (Miller-Struttmann and Galen, 2014; Traveset et al.,
2016; Lara-Romero et al., 2019). Yet, no comprehensive research
has been done on invertebrate biological control in either setting
and only few (largely) observational studies have gauged the
abundance and diversity of biological control agents (BCAs). In
this Perspective piece, we show how work in these settings can
pick up early warning signals of an eventual collapse of trophic
regulatory processes, predict the fate of biological control under
global environmental change and scientifically guide the use of
BCAs against invasive or endemic pests.

ANTICIPATING FUNCTIONALITIES OF
SPECIES-POOR COMMUNITIES

Sixty years ago, influential entomologists emphasized how islands
might help to uncover “common denominators” of biological
control success (De Bach, 1962). As hundreds of predators and
parasitoids have been (purposely or accidentally) released in
island ecosystems over the past century (Hajek et al., 2007),
a methodical assessment of the resulting outcomes could raise
success rates in classical biological control (Mason, 2021). It can
pinpoint which taxa or guilds of BCAs are more successful—
acting singly or concurrently—or which herbivores are more
amenable to biological control (De Bach, 1962). Likewise,
islands provide unique settings to sharpen practices such as
pre-release host range testing or ecological risk assessment
(Van Driesche and Hoddle, 2000; Kaser and Heimpel, 2015).
Further, an in-depth quantification of biological control in island
settings is crucial to confidently gauge insularity effects on
herbivore pressure or plant defense evolution (Moreira and
Abdala-Roberts, 2021; Moreira et al., 2021). Lastly, as per ETIB
colonization-extinction rules, biological control introductions in
smaller islands play out in shorter food chains with smaller
subsets of species and a disproportionate presence of generalists
(Gravel et al., 2011; Roslin et al., 2014; Massol et al., 2017;
Galiana et al., 2018)—discomfiting impressions of a future under
progressive defaunation (Borges et al., 2020). The fate of these
introductions may mirror how trophic regulatory forces act in
simplified agro-ecosystems or, eventually, on a less-biodiverse
Planet. Recent years have seen several studies of richness, trophic
breadth (i.e., generalism), and functional diversity of island
parasitoid communities (Santos and Quicke, 2011; Santos et al.,
2011b, 2016a) and multiple observational studies of predator-
prey interactions (Holt, 2009; Cirtwill and Stouffer, 2016; Holt
et al., 2020). However, aside from the work in Hawaii (Funasaki
et al., 1988; Messing and Wright, 2006), a systematic analysis of
biological control outcomes (i.e., parasitism or predation rate,
herbivore suppression or ultimate crop yield) in insular settings
is long overdue.

To stimulate further thought and illuminate islands’ potential
to inform biological control practice, we plot three different
diversity patterns (Figure 1). First, for historic biological
control introductions (insect BCA vs. insect pest) on 49
islands (Mason, 2021; Figure 1A), we detect no statistically
significant relationship between the overall BCA establishment
rate or the odds of biological control success and island
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FIGURE 1 | Natural enemy establishment rates and the ensuing biological control outcomes on islands of different sizes. (A) Coarse-grained patterns show how
neither insect biological control establishment [F(1, 47) = 0.300, p = 0.587] nor success rate [F(1, 47) = 0.882, p = 0.352] are affected by island size (12–18,280 km2

range). Patterns are plotted for 49 islands harboring 14.9 ± 16.8 target insect pests and receiving 28.1 ± 34.3 insect BCAs (x ± SD). Islands and archipelagos are
treated as comparable units (from Santos et al., 2010). (B) The proportion of generalist and specialist (i.e., parasitoids with less than 10 known hosts) BCAs that
successfully established and provided (partial to good) control of target insect pests on Saipan (119 km2), Easter Island (164 km2), and Guam (549 km2). (C) For six
target herbivores, the number of parasitoids per herbivore host varies with island size (Santos et al., 2010). Parasitoid occurrence records are extracted from the
GloBI interface for each island and target herbivore, and trophic linkages are plotted. Parasitoid families are represented by differently colored dots in the food web;
trendlines are shown per target herbivore: B. tabaci (p = 0.047, R2 = 0.130), L. dispar (p = 0.038, R2 = 0.174), M. persicae (p = 0.452), P. xylostella (p = 0.441),
S. exigua (p = 0.036, R2 = 0.164), T. vaporariorum (p = 0.178).

size (Figure 1A). Hence, when lumping different BCA guilds
and taxa, species richness (i.e., as set by island size) does
not impact these dynamics. Second, for biological control
introductions in the Mariana Islands over 1911–88 (Nafus
and Schreiner, 1989) and in Easter Island over 1980–1995
(Ripa et al., 1995; Figure 1B), specialist BCAs attained slightly
higher establishment rates than generalists, but these differences
were not statistically significant. However, for 108 separate
biological control cases, island size did not exhibit any apparent
effects (Figure 1B). Third, by extracting data from GloBI,1

we document parasitoid-host linkages for six target herbivores
across the above set of 49 islands of varying size (Figure 1C).
Herbivores comprise both large-bodied, mobile taxa [i.e.,
Lymantria dispar L., Plutella xylostella (L.), Spodoptera exigua
(Hübner); Lepidoptera], as well as small-sized ones [Bemisia
tabaci (Gennadius), Trialeurodes vaporariorum (Westwood),
Myzus persicae (Sulzer); Hemiptera, Sternorrhyncha]. While the
number of parasitoids per host consistently increases with island
area, regression lines tend to be steeper for small-sized hosts
such as B. tabaci and T. vaporariorum (Figure 1C). For these
hosts, the associated (minute) parasitoids may possess limited

1www.globalbioticinteractions.org

dispersal capability (Santos et al., 2011a) and do not engage
in phoresy to the same extent as aphid parasitoids (Zhang
et al., 2009). Also, for P. xylostella, anthropogenic movement of
infected agricultural commodities may have facilitated parasitoid
colonization especially in insular settings with high human
population density or tourism. Yet, the above patterns are
drastically reversed when standardizing for sampling effort
(i.e., total number of island biota in the Global Biodiversity
Information Facility GBIF) or for human population numbers.
This could mirror how parasitoid biota are considerably under-
researched in small island settings (e.g., Eisenhauer et al., 2019)
or how anthropogenic forces exert a negative pressure on their
island-level occurrence (Tylianakis et al., 2008; Valiente-Banuet
et al., 2015). Below, we assess these patterns and their relevance
for biological control first from a trophic island biogeography
perspective (Holt, 2009; Massol et al., 2017; Holt et al., 2020) and
subsequently more broadly.

Islands were long thought to be more conducive to successful
biological control, with BCA establishment successes often
ascribed to depauperate island fauna and empty niche space (De
Bach, 1962; Hall and Ehler, 1979). However, this rationale has
proven less apt for generalization than originally thought and
the trophic theory of island biogeography (TTIB; the interplay
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of food web ecology and island biogeography; Holt, 2009)
perspective allows examination of the underlying mechanisms.
Establishment dynamics and the resulting ES outcomes are
modulated by food web complexity (# species, # links), which
increases with island area following a power law (Galiana
et al., 2022). Specialists perform well in simple food webs
(Montoya et al., 2003; Holt, 2009), which should provide them
with an advantage in small oceanic islands. Meanwhile, TTIB
predicts that generalists (i.e., species with broad niche breadth)
are also more likely to occur on small islands, where they
effortlessly encounter suitable (prey, host) resources and thus
are more likely to persist (Gravel et al., 2011; Galiana et al.,
2018). BCA incidence is thus proportional to the square of
its degree, i.e., number of prey or host items (Massol et al.,
2017). Nevertheless, as importation biological control aims to
introduce known antagonists of a resident pest, these trophic
constraints are only relevant for obligate generalists, i.e., those
that require access to different prey or host items to complete
specific development stages (Holt et al., 2020). Hence, introduced
obligate generalists likely do well on islands of intermediate
size, where the full breadth of host (or prey) items is more
likely to be present and where intraspecific competition is
moderate. The same may hold for life history omnivores,
including those that rely upon non-prey resources such as pollen,
(floral) nectar or honeydew (Lundgren, 2009). Conversely,
colonization by specialists is inhibited in prey-rich communities,
where interference competition or intraguild predation are more
dominant. In the presence of their target prey or hosts, specialists
are thus likely to perform best in small- to intermediate-sized
islands (Holt, 2009; Schoener et al., 2016), as suggested in
Figure 1. Hence, when disregarding constraints on colonization,
specialist BCAs may attain substantially higher odds of success in
small, species-poor settings.

In the above, the TTIB and specifically BCA’s dietary
specialization only offers a first approximation of the drivers
of biological control in species-poor settings. As a next step,
we account for the functional differences of species, the
heterogeneity of local habitats and niche partitioning (Kadmon
and Allouche, 2007). Incipient work has shown how biotic
filters—which act during the establishment phase—are core
determinants of parasitoid functional diversity (Santos et al.,
2016a). From a regional pool of potential colonists, only
those with traits that allow exploitation of the resident (host,
prey) resources thrive. These go far beyond dietary breadth
or trophic position (e.g., primary or hyperparasitoid), but also
cover fecundity, development mode, attack strategy, host biology,
behavioral plasticity or species’ ability to consume allochthonous
inputs (Polis and Hurd, 1995). Some variables are captured
by fundamental ecological traits such as body mass (Massol
et al., 2017; Holt et al., 2020), which in turn will define
the overall (resident, introduced) BCA biomass distribution
i.e., another core determinant of biological control (Ostandie
et al., 2021). In addition to trait-based approaches (Perović
et al., 2018), an understanding of food web topology and the
composition of recipient host or prey communities is thus
essential to make useful predictions on establishment potential
(Gravel et al., 2011). Yet, this has been habitually overlooked

during a century of biological control science (e.g., Heimpel
and Asplen, 2011). When interpreting linkages between species
richness, food web structure and biological control outcomes,
connectance can possibly be a defining metric (Galiana et al.,
2018; Yang et al., 2021). Habitat heterogeneity assumes an equally
important role (e.g., providing refuges or climate niches), but its
contribution is scale-dependent and moderated by reproduction
rate—which acts negatively or positively for species with a
respective slow or fast reproductive rate (Kadmon and Allouche,
2007). Hence, habitat heterogeneity cannot be omitted for
example when interpreting differences in S. exigua vs. B. tabaci
parasitoid loads or biological control efficacy (Figure 1C)
and thus needs to feature in an inclusive, functional trait-
based approach. Similarly, environmental heterogeneity shapes
BCAs’ habitat domain (i.e., the spatial extent of habitat space
used), defines its overlap with that of target host or prey
items and can help us to anticipate the outcomes of predator-
prey interactions (Schmitz et al., 2017). In addition, other
confounding factors include release numbers, which determine
demographic factors such as Allee effects or genetic bottlenecks
(Grevstad, 1999), environmental heterogeneity (Barajas-Barbosa
et al., 2020) and the on-site presence of a seasoned biological
control practitioner (MJW Cock, personal comm.). Clearly,
myriad ecological and anthropogenic processes shape biotic
interactions and the resulting ecosystem services (Cabral
et al., 2017) and the related phenomena play out in islands
with varying species numbers. Exciting island biogeography
research lays ahead to unravel those and guide the practice of
biological control.

PRISMS FOR GAUGING IMPACTS OF
GLOBAL WARMING

Climate change is expected to alter the strength and stability
of biological control e.g., by affecting BCA fitness, geographical
distributions and phenological mismatches (Furlong and Zalucki,
2017; Nechols, 2021). Mountain ecosystems provide a unique and
prescient opportunity to view and examine the consequences of
a warmer future, but mountain ecology science has made scant
progress in gauging community assembly dynamics, defining
explanatory models or assessing ecosystem functioning (Dangles
et al., 2008; Peters et al., 2016; Steinbauer et al., 2018).
Clearly, these patterns and the associated ES result from an
intricate interplay of spatiotemporal mechanisms and species-
or population-level processes e.g., metabolic constraints, niche
ranges, host (plant) phenology (Cabral et al., 2017). While
temperature shapes community-level richness in mountain
settings (Peters et al., 2016), short-wave radiation, atmospheric
pressure, precipitation and turbulence all act as confounding
variables (Hodkinson, 2005). For example, for BCA taxa such as
parasitoids or hoverflies, precipitation dictates diversity patterns
in the dry savannah ecosystem of Mount Kilimanjaro (Peters
et al., 2016). Similarly, while the thermal niche space of individual
taxa may vary substantially (Kühsel and Blüthgen, 2015), little is
known about the thermal resilience of biological control across
geographies and ecological contexts.
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Mountain settings do hold ample promise to resolve these
questions, and biological control scientists have made cautious
attempts to pick up meaningful patterns (Sivinski et al., 2000;
Moya-Raygoza et al., 2012). So far, observational studies in
mountain ecosystems have primarily considered simple (bi-
trophic) interactions and failed to yield general rules of thumb
(Hodkinson, 2005). Apparent declines in biological control
have been ascribed to drops in foraging abilities of parasitoids
and (comparative specialist) predators at cooler temperatures.
This, however, over-simplifies the complexity of real-world
communities: indeed, multiple direct and indirect as well as
trophic and non-trophic interactions shape biotic interactions
and the resulting biological control outcomes (Cabral et al.,
2017; Thierry et al., 2019). Initial manipulative assays reveal how
parasitoid-host food webs change considerably along elevational
gradients (Maunsell et al., 2015), with important mediating
effects of habitat diversity (Corcos et al., 2018). Biotic interactions
(e.g., oviposition behavior, host availability, constitutive defenses,
predator-free space) further mediate temperature effects on insect
species along altitudinal ranges (Merrill et al., 2008; Rasmann
et al., 2014b; Moreira et al., 2018). Altitudinal responses are also
greatly modulated by functional traits of target pests and BCAs
alike (Péré et al., 2013). In addition to thermal niche space,
trophic niche breadth is mediated by altitude and local host
or prey communities (Rasmann et al., 2014a); higher degrees
of polyphagy have thus been recorded among high-altitude
bumblebees (Miller-Struttmann and Galen, 2014). If the “altitude
niche breadth hypothesis” also applies to BCAs, this will clearly
impact biological control in mountain settings. To complicate
matters further, many of the above patterns are plastic and
adaptive over time (Le Lann et al., 2021). Hence, anticipating the
above (direct, indirect) impacts is challenging and existing studies
only detect few consistencies across crop × pest systems and
farming contexts (Nechols, 2021). Evidently, few observations
over space and time make it impossible to make wide-ranging
predictions regarding the fate of biological control.

By plotting two different patterns in parasitism with altitude,
we accentuate the promise but also the pitfalls of mountain
ecological research for biological control (Figure 2A). First,
we draw on published work (Molina-Ochoa et al., 2004) to
assess whether parasitism of the fall armyworm Spodoptera
frugiperda Smith varies with altitude across six Mexican states.
A gradual decline in S. frugiperda parasitism with altitude
corresponds with other work (Péré et al., 2013), although
parasitoid richness is entirely unaffected. With increasing
altitude, considerable species turnover is recorded among
13 parasitoid taxa. Individual parasitoid species exhibit clear
altitudinal zonation and (associated) thermal niches, with
Campoletis flavicincta Ashmead more prevalent at higher
altitudes. Meanwhile, Chelonis insularis Cresson acts across
altitudes and Euplectrus plathypenae Howard and Meteorus
laphygmae Viereck dominate in lowlands. Aside from their
different thermal responses, these species differ in attack strategy,
development mode and/or dietary breadth. Also, the markedly
lower S. fruiperda infestation levels at higher altitudes (Wyckhuys
and O’Neil, 2006) restrain parasitoid search efficiency and carry
implications for the overall relevance of biological control.

A second exercise draws on published datasets of Tephritid fruit
fly parasitoids from the tropical Andes i.e., multiple sites in
Colombia and Peru (e.g., Ruiz-Hurtado et al., 2013; Saavedra-
Díaz et al., 2017; Salazar-Mendoza et al., 2021; Figure 2B).
For a complex of Tephritid hosts (dominated by Anastrepha
striata Schiner) and a broad altitudinal range (300–2,264 m),
parasitism increased with altitude. This contrasts with studies
in other agricultural settings (Sivinski et al., 2000), over narrow
elevational bands or with lower sample sizes (Salazar-Mendoza
et al., 2021), where marked declines were recorded. While
Sivinski et al. (2000) logged the highest parasitism levels
(16%) at 600–800 m in central Veracruz (Mexico), values of
26.5% (max. 86.7%) were recorded in the Andes at 1,600–
1,800. Despite eventual methodological differences and seasonal
impacts between studies, it may prove rewarding to closely
examine the underlying causal factors. One possible explanation
is that local farming context (e.g., pesticide use intensity,
landscape heterogeneity) can reverse some of the observed
patterns. In more pristine landscapes (e.g., possibly in Colombia’s
High Andes), parasitoid diversity can be retained and inter-
habitat spillover of generalists thus bolsters (on-farm) biological
control (Laliberté and Tylianakis, 2010). By accounting for
the “habitat domain,” one can forecast the resulting host-
parasitoid interactions and parasitoid-mediated ES (Schmitz
and Barton, 2014). In the meantime, it is important to bear
in mind that the above patterns solely consider (relatively
host-specific) parasitoids and disregard a multitude of other
BCAs e.g., generalist predators or entomopathogens. Some of
these potentially outperform parasitoids under the comparatively
humid, high-altitude conditions of the tropics. Hence, when
observing drops in parasitism with altitude (Péré et al., 2013),
one may be tempted to foresee a more effective biological control
in a warmer world. Yet, especially when compounded by species
loss and environmental degradation, the reality may prove to be
entirely different.

MOVING FORWARD

Islands and mountain ecosystems provide complementary lenses
through which scientists can examine (and anticipate) biological
control outcomes under conditions of progressive biodiversity
loss or global warming. In both settings, multiple roads can
be pursued to relate demographic processes, (spatially defined)
biotic interactions and the ultimate ecosystem service delivery
(Cabral et al., 2017; Moreira et al., 2021). These include
observational assays, empirical studies, e.g., manipulative trials
and (mechanistic) simulation models. As a logical starting
point for future work, one can examine the (2,300) island-
specific records of historic biological control introductions in
the BIOCAT database (Cock et al., 2016). For BCAs with
varying functional traits (e.g., as deployed against common
targets), conditional incidence can be examined for islands
of varying size, heterogeneity or energy (Wright, 1983; Holt,
2009). Aside from yielding static, species specific attributes or
inferences on specific predator x prey couplets (Massol et al.,
2017; Schmitz et al., 2017), doing so can generate insights into
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FIGURE 2 | Parasitism rates are differentially affected by altitude, for two prime sets of agricultural pests in Neotropical mountain ranges. (A) Shows parasitism rates
of the fall armyworm Spodoptera frugiperda on major cereal grains in six Mexican states, by a complex of 13 parasitoid (morpho-)species. Parasitism steadily
declines with elevation [F(1, 62) = 6.231, p = 0.015, R2 = 0.091], while parasitoid richness remains unaffected [F(1, 62) = 0.047, p = 0.829]. (B) Reveals parasitism
levels of a (multi-species) complex of Tephritid fruit flies in Andean mountain settings. Although overall parasitism increases with altitudinal elevation [F(1, 66) = 4.19,
p = 0.045, R2 = 0.060], values appear to decline rapidly at altitudes above 2,000 m.

how multiple BCAs act within dynamic communities. In the
meantime, fieldwork needs to be conducted in a systematic
manner -using standardized protocols—across different island
and/or mountain settings (e.g., Borges et al., 2018). In
insular settings, observational assays can use aggregate density
(as a proxy for richness; Holt, 2009) of individual BCA
taxa to reveal their TIB species-area relationships or the
trophic structure of local communities as predictor of BCA
establishment (Cirtwill and Stouffer, 2016). To our knowledge,
BCA exclusion assays or gut content analyses, i.e., mainstays
of empirical biological control science in mainland settings
(Furlong, 2015)- wait to be conducted with island biota
or across altitudinal ranges. These field-level data eventually
can feed simulation models and thus generate much-needed
insights and theories regarding the fate of biological control
under progressive ecological simplification. One hereby urgently
needs to look beyond richness or community assembly, and
instead aim to unveil the mechanistic basis of (agro-)ecosystem

functioning. Time is of the essence, because global change
impacts on biological control and ecological resilience are prone
to be unforgiving.
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