21 research outputs found

    Biochars from solid digestates as sorbing materials for metal(loid)s removal from water

    Get PDF
    JĂ€tevesilietteen (SSD) ja kiinteĂ€n jĂ€tteen lietteen orgaaninen osuuden (OFMSWD) katsotaan tĂ€llĂ€ hetkellĂ€ olevan vaihtoehtoisia raaka-aineita biocharin tuotantoon kĂ€sittelyn jĂ€lkeisen korkean jĂ€ljelle jÀÀneen kiinteĂ€n orgaanisen jĂ€tteen mÀÀrĂ€nsĂ€ ansiosta. KiinteĂ€n lietteen pyrolyysi tunnetaan vaihtoehtoisena menetelmĂ€nĂ€, jolla edistetÀÀn orgaanisten jĂ€tteiden kierrĂ€tystĂ€ ja tuotetaan lisĂ€arvoa tuottavia biotuotteita (esim. biochar). Yleisesti biochar on paljon alhaisempi sorptiokapasiteetti metalloid teihin verrattuna aktiivihiiliin. Siksi kemiallisen kĂ€sittelyn katsotaan olevan vaihtoehto biocharin pinnan ominaisuuksien parantamiseen ja tĂ€ten paremman metall(oid)ien sorptiokyvyn indusointiin biocharin pinnalla. TĂ€ssĂ€ työssĂ€, SSD ja OFMSWD pohjaiset biochar it kĂ€siteltiin 2 M KOH:lla tai 10% H2O2:lla jonka jĂ€lkeen ne erĂ€pestiin tai erĂ€pestiin ja kolonnipestiin ultrapuhtaalla vedell'. Fysikokemialliset ominaisuudet mukaanlukien isoelektrisen pisteen pH:n (pHPZC), Brunauer-Emmet-Tellerin pinta-alan (SBET) ja kationinvaihtokapasiteetin (CEC) mÀÀriteltiin kaikille biochareille, tavoitteena liittÀÀ niiden paremmat pintaominaisuudet metall(oid)ien lisÀÀntyneeseen sorptiokykyyn. Kaikkia biochareja kĂ€ytettiin sen jĂ€lkeen kemiallisen kĂ€sittelyn ja biochar pesun vaikutuksen tutkimiseen Pb(II):n, Cd(II):n ja As(III, V):n sorptiokĂ€yttĂ€ytymiseen erĂ€soprptiokinetiikan ja isotermian avulla. LisĂ€ksi, As redox-tila jakauma (As(III) ja As(V)) As(III):n sorption aikana biochar pintaan ja neste yhdisteeseen mÀÀriteltiin kĂ€yttĂ€mĂ€llĂ€ kiinteĂ€-nesteuuttoa ja sen jĂ€lkeistĂ€ nesteen kromatograafista analyysia. Tulokset osoittivat pHPZC:n, SBET:n ja CEC:n lisÀÀntymisen biocharin kemiallisen kĂ€sittelyn jĂ€lkeen Pb(II):n, Cd(II):n ja As(V):n tehostetun sorptiokyvyn mukaisesti. Esimerkiksi maksimaalinen sorptiokapasiteetti (Qm) kasvoi 1,6 umol g⁻1:stĂ€ (As(V)) ja 15,4 umol g⁻1:stĂ€ (Cd(II)) raakaa SSD-biocharista arvoon 8,1 umol g⁻1 (As( V)) ja 306,1 ÎŒmol g⁻1 (Cd(II)) H2O2:n ja KOH-kĂ€sittelyn jĂ€lkeen (alussa pH 5,0). Samoin Pb(II):n Qm:ÀÀ lisĂ€ttiin 31,4 ÎŒmol g⁻1:stĂ€ (raakaa SSD-biocharia) 121,9 ÎŒmol g⁻1:een H2O2-modifioidulla SSD-biocharilla. Pb(II):n sorptiokapasiteettia ei kuitenkaan mÀÀritetty KOH-kĂ€sittelyn jĂ€lkeen, koska Langmuir-isotermimallia ei saatu sopimaan kokeellisiin tuloksiin. TĂ€mĂ€ osoittaa, ettĂ€ KOH-modifioidun SSD-biocharin riittĂ€mĂ€tön pesu voi haitata Pb(II)-sorptiota, joka johtuu liuenneista orgaanisista yhdisteistĂ€, jotka voivat olla vuorovaikutuksessa Pb2+:n kanssa ja siten muodostaa Pb-ligandikomplekseja liuoksessa. LisĂ€ksi As redox -jakauma osoitti suurta hapetusta (70%) As(III):sta As(V):hen KOH-modifioidussa SSD-biocharissa erĂ€pesulla, kun taas As(III) hapetettiin osittain (7%) KOH-modifioitu SSD-biochar, jossa on erĂ€- ja myöhemmĂ€t kolonnipestiin. TĂ€mĂ€ korostaa pesumenettelyn tĂ€rkeÀÀ merkitystĂ€ metall(oid)in sorptiolle, erityisesti Pb(II):lle ja As(V):lle. As-uutto ja sen jĂ€lkeinen nestekromatografinen analyysi suoritettiin onnistuneesti As(III):n hapettumisen kvantitatiivisen palautumisen ja sĂ€ilyttĂ€misen saavuttamiseksi askorbiinihapon avulla. Sorptiokinetiikan aikana As(III) voi olla stabiili tai osittain hapettunut biochar kĂ€sittelystĂ€ riippuen. LisĂ€ksi biochar materiaali indusoi voimakkaan As(III):n hapettumisen ja vĂ€hĂ€isemmĂ€n hapettumisen liuenneiden yhdisteiden vapautumisella biocharista. Yhteenvetona voidaan todeta, ettĂ€ liete biocharit, joilla on kemiallinen kĂ€sittely ja oikeanlainen biochar pesumenettely, voidaan kĂ€yttÀÀ onnistuneesti sorbentteina Pb(II), Cd(II) ja As(III, V) sorptiokyvyn parantamiseksi. LisĂ€ksi As redox-jakauma biocharilla ja nestemĂ€isissĂ€ liuoksissa sorption aikana voidaan saavuttaa As-uutolla ja kromatografisella analyysillĂ€, mikĂ€ antaa paremman kĂ€sityksen As(III):n ja As(V):n vĂ€lisestĂ€ transformaatiosta biochar-neste-sorptiossa systeemissĂ€.Sewage sludge digestate (SSD) and the organic fraction of municipal solid waste digestate (OFMSWD) are currently considered as alternative feedstocks for biochar production due to the high amount of the organic solid waste remaining at the end of the treatment. The pyrolysis of solid digestate is known as an alternative to promote the recycling of organic wastes and generate added-value bio-products (e.g. biochar). Generally, the digestate biochar has a much lower sorption capacity for metal(loid)s compared to activated carbons. Therefore, chemical treatment is considered as a potential option to improve the biochar surface properties and thus inducing a better sorption ability for metal(loid)s on the biochar surface. In this present work, the SSD and OFMSWD derived biochars were treated with 2 M KOH or 10% H2O2 followed by batch washing or batch and subsequent column washings with ultrapure water. The physicochemical properties including the pH of point of zero charge (pHPZC), the Brunauer-Emmett-Teller surface area (SBET) and cation exchange capacity (CEC) were determined for all the biochars in order to link their improved surface properties to the enhanced sorption ability for metal(loid)s. All the biochars were then used to study the influence of chemical treatment and biochar washing procedure on the sorption behavior of Pb(II), Cd(II) and As(III, V) through the batch sorption kinetics and isotherms. Moreover, the As redox state distribution (i.e. As(III) and As(V)) during the As(III) sorption onto the biochar surface and in liquid solution was determined by using solid-liquid extraction followed by liquid chromatographic analysis. Results showed increases of the pHPZC, SBET and CEC after chemical treatment of the biochar, in accordance with the enhanced sorption ability for Pb(II), Cd(II) and As(V). For instance, the maximum sorption capacity (Qm) was increased from 1.6 ÎŒmol g−1 (As(V)) and 15.4 ÎŒmol g−1 (Cd(II)) on the raw SSD biochar to 8.1 ÎŒmol g−1 (As(V)) and 306.1 ÎŒmol g−1 (Cd(II)) after the H2O2 and KOH treatment, respectively (at initial pH 5.0). Similarly, the Qm of Pb(II) was also increased from 31.4 ÎŒmol g⁻1 (raw SSD biochar) to 121.9 ÎŒmol g⁻1 on the H2O2 modified SSD biochar. However, the sorption capacity for Pb(II) was not determined after KOH treatment due to the failing of the Langmuir isotherm model to fit the experimental data. This indicates that insufficient washing of the KOH-modified SSD biochar can hinder the Pb(II) sorption due to the release dissolved organic compounds from this biochar that may interact with Pb2+ and thereby forming Pb-ligand complexes in the solution. In addition, the As redox distribution showed a large oxidation (70%) of As(III) to As(V) in KOH-modified SSD biochar with batch washing, while As(III) was partially oxidized (7%) in the KOH-modified SSD biochar with batch and subsequent column washings. This highlights an important role of washing procedure for sorption of metal(loid)s, particularly for Pb(II) and As(V). The As extraction followed by liquid chromatographic analysis was successfully established to quantitatively recover and preserve As(III) oxidation with the use of ascorbic acid. During the sorption kinetics, As(III) may be stable or partially oxidized depending on the biochar treatment. In addition, the oxidation of As(III) was strongly induced by the biochar material and to a lesser extent by the release of dissolved compounds from the biochar. In summary, digestate biochars with the chemical treatment followed by a proper biochar washing procedure can be successfully used as potential sorbents to enhance the Pb(II), Cd(II) and As(III, V) sorption capacity. Moreover, the determination of As redox distribution on the biochars and in liquid phase during the sorption process can be achieved through the As extraction and chromatographic analysis, providing a better understanding of the transformation between As(III) and As(V) in the biochar-liquid sorption system

    Review of biochar role as additive in anaerobic digestion processes

    Get PDF
    because of the urgent need to provide renewable energy sources and efficiently manage the continuously growing amount of organic waste. Biochar (BC) is an extremely versatile material, which could be produced by carbonization of organic materials, including biomass and wastes, consistently with Circular Economy principles, and “tailor-made” for specific applications. The potential BC role as additive in the control of the many wellknown critical issues of AD processes has been increasingly explored over the past few years. However, a clear and comprehensive understanding of the connections between BC and AD is still missing. This review paper analyses and discusses significant references (review articles, research papers and international databases and reports), mostly published in the last 10 years. This review is aimed at addressing three key issues related to the better understanding of the BC role in AD processes: 1. Investigation of the influence of BC properties on AD performances and of their ability to counteract its main challenges; 2. Assessment of the optimal BC production chain (i.e. feedstock-pyrolysis-activation) to achieve the desired features; 3. Evaluation of the economic and environmental advantages connected to BC use in AD processes, compared to conventional solutions applied to address AD challenges

    Biochars de digestats comme sorbants pour le traitement des eaux contaminées par des métal(loïde)s

    Get PDF
    Sewage sludge digestate (SSD) and the organic fraction of municipal solid waste digestate (OFMSWD) are currently considered as alternative feedstocks for biochar production due to the high amount of the organic solid waste remaining at the end of the treatment. The pyrolysis of solid digestate is known as an alternative to promote the recycling of organic wastes and generate added-value bio-products (e.g. biochar). Generally, the digestate biochar has a much lower sorption capacity for metal(loid)s compared to activated carbons. Therefore, chemical treatment is considered as a potential option to improve the biochar surface properties and thus inducing a better sorption ability for metal(loid)s on the biochar surface. The biochars were treated with 2 M KOH or 10% H2O2 followed by batch washing or batch and subsequent column washings with ultrapure water. The physicochemical properties including the pH of point of zero charge, the surface area and cation exchange capacity were determined for all the biochars in order to link their improved surface properties to the enhanced sorption ability for metal(loid)s. All the biochars were then used to study the influence of chemical treatment and biochar washing procedure on the sorption behavior of Pb(II), Cd(II) and As(III, V) through the batch sorption kinetics and isotherms. Moreover, the As redox state distribution (i.e. As(III, V)) during the As(III) sorption onto the biochar surface and in liquid solution was determined by using solid-liquid extraction followed by liquid chromatographic analysis. Results showed increases of the sorption ability for Pb(II), Cd(II) and As(V) after chemical treatment. For instance, the maximum sorption capacity (Qm) of Cd(II) was increased from 15.4 ”mol g−1 on the raw SSD biochar to 306.1 ”mol g−1 after the KOH treatment (at initial pH 5.0). Similarly, the Qm of Pb(II) was also increased from 6.5 mg g⁻1 (raw SSD biochar) to 25 mg g⁻1 on the H2O2 modified SSD biochar. However, the sorption capacity for Pb(II) was not determined after KOH treatment due to the failing of the Langmuir isotherm model to fit the experimental data. This indicates that insufficient washing of the KOH-modified SSD biochar can hinder the Pb(II) sorption due to the release dissolved organic compounds from this biochar that may interact with Pb2+ and thereby forming Pb-ligand complexes in the solution. This highlights an important role of washing procedure for Pb(II) sorption by the biochar. The As redox distribution showed a large oxidation (70%) of As(III) to As(V) in KOH-modified SSD biochar with batch washing, while As(III) was partially oxidized (7%) in the KOH-modified SSD biochar with batch and subsequent column washings. The As extraction followed by liquid chromatographic analysis was successfully established to quantitatively recover arsenic (i.e. As(III, V)). The oxidation of As(III) was strongly induced by the biochar and to a lesser extent by the release of dissolved compounds from the biochar. In summary, digestate biochars with the chemical treatment followed by a proper biochar washing procedure can be successfully used as potential sorbents to enhance the Pb(II), Cd(II) and As(III, V) sorption capacity. Moreover, the determination of As redox distribution on the biochars and in liquid phase during the sorption process can be achieved through the As extraction and chromatographic analysis, providing a better understanding of the transformation between As(III) and As(V) in the biochar-liquid sorption systemLes digestats des boues d'Ă©puration (SSD) et les digestats de la fraction organique des dĂ©chets mĂ©nagers (OFMSWD) ont Ă©tĂ© rĂ©cemment considĂ©rĂ©s comme des sources potentielles pour la production de biochars en raison des quantitĂ©s grandissantes de digestats solides restant Ă  la fin de la digestion anaĂ©robie. La pyrolyse des digestats solides est connue comme une technique pour promouvoir le recyclage des dĂ©chets organiques et gĂ©nĂ©rer des bio-produits Ă  valeur ajoutĂ©e (i.e. biochar). En outre, en raison d'une capacitĂ© de sorption des mĂ©tal(loĂŻde)s des biochars moins bonnes par rapport aux charbon actifs traditionnels, la modification chimique des biochars bruts est considĂ©rĂ©e comme une alternative pour amĂ©liorer les propriĂ©tĂ©s de surface des biochars et induire ainsi une meilleure capacitĂ© de sorption des mĂ©tal(loĂŻde)s. Les biochars ont Ă©tĂ© traitĂ©s avec 2 M de KOH ou 10% de H2O2, suivis d'un lavage en batch seul ou batch combinĂ© avec un lavage en colonne Ă  l’aide d'eau ultrapure. Les analyses des propriĂ©tĂ©s de biochar, le pH du point de charge nulle, la surface spĂ©cifique et la capacitĂ© d'Ă©change cationique ont Ă©tĂ© effectuĂ©es sur les biochars bruts et modifiĂ©s afin de relier leurs propriĂ©tĂ©s de surface au comportement de sorption vis-Ă -vis des mĂ©tal(loĂŻde)s. Tous les biochars ont ensuite Ă©tĂ© utilisĂ©s pour Ă©tudier l'influence du traitement chimique et de la procĂ©dure de lavage des biochars sur le comportement de sorption du Pb(II), Cd(II) et As(III, V) Ă  travers l’étude de la cinĂ©tique et des isothermes de sorption. De plus, l’évolution de l'Ă©tat redox As (i.e. As(III, V)) pendant la sorption de l'As(III) sur la surface du biochar et en solution liquide a Ă©tĂ© dĂ©terminĂ©e par extraction solide-liquide suivie d'une analyse en chromatographie liquide.Les rĂ©sultats ont montrĂ© des augmentations de la capacitĂ© de sorption pour le Pb(II), le Cd(II) et l’As(V) aprĂšs traitement chimique du biochar. Par exemple, la capacitĂ© de sorption maximale (Qm) (Cd(II)) a Ă©tĂ© augmentĂ©e de 15,4 ”mol g−1 sur le biochar de SSD brut Ă  306,1 ”mol g−1 aprĂšs le traitement au KOH (au pH initial de 5,0). De mĂȘme, la valeur de Qm du Pb(II) a augmentĂ© de 6,5 mg g−1 (biochar de SSD) Ă  25 mg g−1 sur le biochar modifiĂ© par H2O2. NĂ©anmoins, la capacitĂ© de sorption du biochar SSD modifiĂ© par KOH n'a pas Ă©tĂ© dĂ©terminĂ©e en raison de l’impossibilitĂ© de modĂ©liser les donnĂ©es expĂ©rimentales avec le modĂšle de l’isotherme de Langmuir. Cela indique qu'un lavage insuffisant du biochar SSD modifiĂ© par KOH peut inhiber la sorption de Pb(II) en raison de la libĂ©ration de composĂ©s organiques dissous de ce biochar pouvant interagir avec Pb2+ et ainsi former des complexes Pb-ligand dans la solution. Ceci met en Ă©vidence le rĂŽle important de la procĂ©dure de lavage sur l’efficacitĂ© de la sorption du Pb(II) sur le biochar. L’étude de la distribution de l’état redox de l'arsenic a montrĂ© une oxydation importante (70%) de As (III) en As (V) dans le biochar SSD traitĂ© au KOH avec lavage par batch, tandis que l'As(III) a Ă©tĂ© partiellement oxydĂ© (7%) dans le biochar SSD traitĂ© au KOH avec un lavage en colonne. L'extraction de l’arsenic fixĂ© par les biochars suivie d'une analyse par chromatographie en phase liquide a Ă©tĂ© Ă©tablie avec succĂšs pour rĂ©cupĂ©rer quantitativement de l'As(III, V) Il a Ă©tĂ© montrĂ© que l'oxydation de As(III) Ă©tait fortement induite par le biochar et, dans une moindre mesure, par des composĂ©s dissous libĂ©rĂ©s par les biochars.En rĂ©sumĂ©, les biochars de digestat modifiĂ©s par traitement chimique suivi d'une procĂ©dure de lavage appropriĂ©e du biochar peuvent ĂȘtre utilisĂ©s avec succĂšs comme sorbants de Pb(II), Cd(II) et As(III, V). En outre, l'Ă©volution de la distribution redox de l’arsenic dans les biochars et les solutions liquides Ă  l'aide de l'extraction de liquide solide et de l'analyse chromatographique a Ă©tĂ© dĂ©terminĂ©e. Cela permet de mieux comprendre la transformation entre As(III) et As(V) lors la sorption de l’arsenic sur les biochar

    Biochars from solid digestates as sorbing materials for metal(loid)s removal from water

    Get PDF
    JĂ€tevesilietteen (SSD) ja kiinteĂ€n jĂ€tteen lietteen orgaaninen osuuden (OFMSWD) katsotaan tĂ€llĂ€ hetkellĂ€ olevan vaihtoehtoisia raaka-aineita biocharin tuotantoon kĂ€sittelyn jĂ€lkeisen korkean jĂ€ljelle jÀÀneen kiinteĂ€n orgaanisen jĂ€tteen mÀÀrĂ€nsĂ€ ansiosta. KiinteĂ€n lietteen pyrolyysi tunnetaan vaihtoehtoisena menetelmĂ€nĂ€, jolla edistetÀÀn orgaanisten jĂ€tteiden kierrĂ€tystĂ€ ja tuotetaan lisĂ€arvoa tuottavia biotuotteita (esim. biochar). Yleisesti biochar on paljon alhaisempi sorptiokapasiteetti metalloid teihin verrattuna aktiivihiiliin. Siksi kemiallisen kĂ€sittelyn katsotaan olevan vaihtoehto biocharin pinnan ominaisuuksien parantamiseen ja tĂ€ten paremman metall(oid)ien sorptiokyvyn indusointiin biocharin pinnalla. TĂ€ssĂ€ työssĂ€, SSD ja OFMSWD pohjaiset biochar it kĂ€siteltiin 2 M KOH:lla tai 10% H2O2:lla jonka jĂ€lkeen ne erĂ€pestiin tai erĂ€pestiin ja kolonnipestiin ultrapuhtaalla vedell'. Fysikokemialliset ominaisuudet mukaanlukien isoelektrisen pisteen pH:n (pHPZC), Brunauer-Emmet-Tellerin pinta-alan (SBET) ja kationinvaihtokapasiteetin (CEC) mÀÀriteltiin kaikille biochareille, tavoitteena liittÀÀ niiden paremmat pintaominaisuudet metall(oid)ien lisÀÀntyneeseen sorptiokykyyn. Kaikkia biochareja kĂ€ytettiin sen jĂ€lkeen kemiallisen kĂ€sittelyn ja biochar pesun vaikutuksen tutkimiseen Pb(II):n, Cd(II):n ja As(III, V):n sorptiokĂ€yttĂ€ytymiseen erĂ€soprptiokinetiikan ja isotermian avulla. LisĂ€ksi, As redox-tila jakauma (As(III) ja As(V)) As(III):n sorption aikana biochar pintaan ja neste yhdisteeseen mÀÀriteltiin kĂ€yttĂ€mĂ€llĂ€ kiinteĂ€-nesteuuttoa ja sen jĂ€lkeistĂ€ nesteen kromatograafista analyysia. Tulokset osoittivat pHPZC:n, SBET:n ja CEC:n lisÀÀntymisen biocharin kemiallisen kĂ€sittelyn jĂ€lkeen Pb(II):n, Cd(II):n ja As(V):n tehostetun sorptiokyvyn mukaisesti. Esimerkiksi maksimaalinen sorptiokapasiteetti (Qm) kasvoi 1,6 umol g⁻1:stĂ€ (As(V)) ja 15,4 umol g⁻1:stĂ€ (Cd(II)) raakaa SSD-biocharista arvoon 8,1 umol g⁻1 (As( V)) ja 306,1 ÎŒmol g⁻1 (Cd(II)) H2O2:n ja KOH-kĂ€sittelyn jĂ€lkeen (alussa pH 5,0). Samoin Pb(II):n Qm:ÀÀ lisĂ€ttiin 31,4 ÎŒmol g⁻1:stĂ€ (raakaa SSD-biocharia) 121,9 ÎŒmol g⁻1:een H2O2-modifioidulla SSD-biocharilla. Pb(II):n sorptiokapasiteettia ei kuitenkaan mÀÀritetty KOH-kĂ€sittelyn jĂ€lkeen, koska Langmuir-isotermimallia ei saatu sopimaan kokeellisiin tuloksiin. TĂ€mĂ€ osoittaa, ettĂ€ KOH-modifioidun SSD-biocharin riittĂ€mĂ€tön pesu voi haitata Pb(II)-sorptiota, joka johtuu liuenneista orgaanisista yhdisteistĂ€, jotka voivat olla vuorovaikutuksessa Pb2+:n kanssa ja siten muodostaa Pb-ligandikomplekseja liuoksessa. LisĂ€ksi As redox -jakauma osoitti suurta hapetusta (70%) As(III):sta As(V):hen KOH-modifioidussa SSD-biocharissa erĂ€pesulla, kun taas As(III) hapetettiin osittain (7%) KOH-modifioitu SSD-biochar, jossa on erĂ€- ja myöhemmĂ€t kolonnipestiin. TĂ€mĂ€ korostaa pesumenettelyn tĂ€rkeÀÀ merkitystĂ€ metall(oid)in sorptiolle, erityisesti Pb(II):lle ja As(V):lle. As-uutto ja sen jĂ€lkeinen nestekromatografinen analyysi suoritettiin onnistuneesti As(III):n hapettumisen kvantitatiivisen palautumisen ja sĂ€ilyttĂ€misen saavuttamiseksi askorbiinihapon avulla. Sorptiokinetiikan aikana As(III) voi olla stabiili tai osittain hapettunut biochar kĂ€sittelystĂ€ riippuen. LisĂ€ksi biochar materiaali indusoi voimakkaan As(III):n hapettumisen ja vĂ€hĂ€isemmĂ€n hapettumisen liuenneiden yhdisteiden vapautumisella biocharista. Yhteenvetona voidaan todeta, ettĂ€ liete biocharit, joilla on kemiallinen kĂ€sittely ja oikeanlainen biochar pesumenettely, voidaan kĂ€yttÀÀ onnistuneesti sorbentteina Pb(II), Cd(II) ja As(III, V) sorptiokyvyn parantamiseksi. LisĂ€ksi As redox-jakauma biocharilla ja nestemĂ€isissĂ€ liuoksissa sorption aikana voidaan saavuttaa As-uutolla ja kromatografisella analyysillĂ€, mikĂ€ antaa paremman kĂ€sityksen As(III):n ja As(V):n vĂ€lisestĂ€ transformaatiosta biochar-neste-sorptiossa systeemissĂ€.Sewage sludge digestate (SSD) and the organic fraction of municipal solid waste digestate (OFMSWD) are currently considered as alternative feedstocks for biochar production due to the high amount of the organic solid waste remaining at the end of the treatment. The pyrolysis of solid digestate is known as an alternative to promote the recycling of organic wastes and generate added-value bio-products (e.g. biochar). Generally, the digestate biochar has a much lower sorption capacity for metal(loid)s compared to activated carbons. Therefore, chemical treatment is considered as a potential option to improve the biochar surface properties and thus inducing a better sorption ability for metal(loid)s on the biochar surface. In this present work, the SSD and OFMSWD derived biochars were treated with 2 M KOH or 10% H2O2 followed by batch washing or batch and subsequent column washings with ultrapure water. The physicochemical properties including the pH of point of zero charge (pHPZC), the Brunauer-Emmett-Teller surface area (SBET) and cation exchange capacity (CEC) were determined for all the biochars in order to link their improved surface properties to the enhanced sorption ability for metal(loid)s. All the biochars were then used to study the influence of chemical treatment and biochar washing procedure on the sorption behavior of Pb(II), Cd(II) and As(III, V) through the batch sorption kinetics and isotherms. Moreover, the As redox state distribution (i.e. As(III) and As(V)) during the As(III) sorption onto the biochar surface and in liquid solution was determined by using solid-liquid extraction followed by liquid chromatographic analysis. Results showed increases of the pHPZC, SBET and CEC after chemical treatment of the biochar, in accordance with the enhanced sorption ability for Pb(II), Cd(II) and As(V). For instance, the maximum sorption capacity (Qm) was increased from 1.6 ÎŒmol g−1 (As(V)) and 15.4 ÎŒmol g−1 (Cd(II)) on the raw SSD biochar to 8.1 ÎŒmol g−1 (As(V)) and 306.1 ÎŒmol g−1 (Cd(II)) after the H2O2 and KOH treatment, respectively (at initial pH 5.0). Similarly, the Qm of Pb(II) was also increased from 31.4 ÎŒmol g⁻1 (raw SSD biochar) to 121.9 ÎŒmol g⁻1 on the H2O2 modified SSD biochar. However, the sorption capacity for Pb(II) was not determined after KOH treatment due to the failing of the Langmuir isotherm model to fit the experimental data. This indicates that insufficient washing of the KOH-modified SSD biochar can hinder the Pb(II) sorption due to the release dissolved organic compounds from this biochar that may interact with Pb2+ and thereby forming Pb-ligand complexes in the solution. In addition, the As redox distribution showed a large oxidation (70%) of As(III) to As(V) in KOH-modified SSD biochar with batch washing, while As(III) was partially oxidized (7%) in the KOH-modified SSD biochar with batch and subsequent column washings. This highlights an important role of washing procedure for sorption of metal(loid)s, particularly for Pb(II) and As(V). The As extraction followed by liquid chromatographic analysis was successfully established to quantitatively recover and preserve As(III) oxidation with the use of ascorbic acid. During the sorption kinetics, As(III) may be stable or partially oxidized depending on the biochar treatment. In addition, the oxidation of As(III) was strongly induced by the biochar material and to a lesser extent by the release of dissolved compounds from the biochar. In summary, digestate biochars with the chemical treatment followed by a proper biochar washing procedure can be successfully used as potential sorbents to enhance the Pb(II), Cd(II) and As(III, V) sorption capacity. Moreover, the determination of As redox distribution on the biochars and in liquid phase during the sorption process can be achieved through the As extraction and chromatographic analysis, providing a better understanding of the transformation between As(III) and As(V) in the biochar-liquid sorption system

    Biochars de digestats comme sorbants pour le traitement des eaux contaminées par des métal(loïde)s

    No full text
    Sewage sludge digestate (SSD) and the organic fraction of municipal solid waste digestate (OFMSWD) are currently considered as alternative feedstocks for biochar production due to the high amount of the organic solid waste remaining at the end of the treatment. The pyrolysis of solid digestate is known as an alternative to promote the recycling of organic wastes and generate added-value bio-products (e.g. biochar). Generally, the digestate biochar has a much lower sorption capacity for metal(loid)s compared to activated carbons. Therefore, chemical treatment is considered as a potential option to improve the biochar surface properties and thus inducing a better sorption ability for metal(loid)s on the biochar surface. The biochars were treated with 2 M KOH or 10% H2O2 followed by batch washing or batch and subsequent column washings with ultrapure water. The physicochemical properties including the pH of point of zero charge, the surface area and cation exchange capacity were determined for all the biochars in order to link their improved surface properties to the enhanced sorption ability for metal(loid)s. All the biochars were then used to study the influence of chemical treatment and biochar washing procedure on the sorption behavior of Pb(II), Cd(II) and As(III, V) through the batch sorption kinetics and isotherms. Moreover, the As redox state distribution (i.e. As(III, V)) during the As(III) sorption onto the biochar surface and in liquid solution was determined by using solid-liquid extraction followed by liquid chromatographic analysis. Results showed increases of the sorption ability for Pb(II), Cd(II) and As(V) after chemical treatment. For instance, the maximum sorption capacity (Qm) of Cd(II) was increased from 15.4 ”mol g−1 on the raw SSD biochar to 306.1 ”mol g−1 after the KOH treatment (at initial pH 5.0). Similarly, the Qm of Pb(II) was also increased from 6.5 mg g⁻1 (raw SSD biochar) to 25 mg g⁻1 on the H2O2 modified SSD biochar. However, the sorption capacity for Pb(II) was not determined after KOH treatment due to the failing of the Langmuir isotherm model to fit the experimental data. This indicates that insufficient washing of the KOH-modified SSD biochar can hinder the Pb(II) sorption due to the release dissolved organic compounds from this biochar that may interact with Pb2+ and thereby forming Pb-ligand complexes in the solution. This highlights an important role of washing procedure for Pb(II) sorption by the biochar. The As redox distribution showed a large oxidation (70%) of As(III) to As(V) in KOH-modified SSD biochar with batch washing, while As(III) was partially oxidized (7%) in the KOH-modified SSD biochar with batch and subsequent column washings. The As extraction followed by liquid chromatographic analysis was successfully established to quantitatively recover arsenic (i.e. As(III, V)). The oxidation of As(III) was strongly induced by the biochar and to a lesser extent by the release of dissolved compounds from the biochar. In summary, digestate biochars with the chemical treatment followed by a proper biochar washing procedure can be successfully used as potential sorbents to enhance the Pb(II), Cd(II) and As(III, V) sorption capacity. Moreover, the determination of As redox distribution on the biochars and in liquid phase during the sorption process can be achieved through the As extraction and chromatographic analysis, providing a better understanding of the transformation between As(III) and As(V) in the biochar-liquid sorption systemLes digestats des boues d'Ă©puration (SSD) et les digestats de la fraction organique des dĂ©chets mĂ©nagers (OFMSWD) ont Ă©tĂ© rĂ©cemment considĂ©rĂ©s comme des sources potentielles pour la production de biochars en raison des quantitĂ©s grandissantes de digestats solides restant Ă  la fin de la digestion anaĂ©robie. La pyrolyse des digestats solides est connue comme une technique pour promouvoir le recyclage des dĂ©chets organiques et gĂ©nĂ©rer des bio-produits Ă  valeur ajoutĂ©e (i.e. biochar). En outre, en raison d'une capacitĂ© de sorption des mĂ©tal(loĂŻde)s des biochars moins bonnes par rapport aux charbon actifs traditionnels, la modification chimique des biochars bruts est considĂ©rĂ©e comme une alternative pour amĂ©liorer les propriĂ©tĂ©s de surface des biochars et induire ainsi une meilleure capacitĂ© de sorption des mĂ©tal(loĂŻde)s. Les biochars ont Ă©tĂ© traitĂ©s avec 2 M de KOH ou 10% de H2O2, suivis d'un lavage en batch seul ou batch combinĂ© avec un lavage en colonne Ă  l’aide d'eau ultrapure. Les analyses des propriĂ©tĂ©s de biochar, le pH du point de charge nulle, la surface spĂ©cifique et la capacitĂ© d'Ă©change cationique ont Ă©tĂ© effectuĂ©es sur les biochars bruts et modifiĂ©s afin de relier leurs propriĂ©tĂ©s de surface au comportement de sorption vis-Ă -vis des mĂ©tal(loĂŻde)s. Tous les biochars ont ensuite Ă©tĂ© utilisĂ©s pour Ă©tudier l'influence du traitement chimique et de la procĂ©dure de lavage des biochars sur le comportement de sorption du Pb(II), Cd(II) et As(III, V) Ă  travers l’étude de la cinĂ©tique et des isothermes de sorption. De plus, l’évolution de l'Ă©tat redox As (i.e. As(III, V)) pendant la sorption de l'As(III) sur la surface du biochar et en solution liquide a Ă©tĂ© dĂ©terminĂ©e par extraction solide-liquide suivie d'une analyse en chromatographie liquide.Les rĂ©sultats ont montrĂ© des augmentations de la capacitĂ© de sorption pour le Pb(II), le Cd(II) et l’As(V) aprĂšs traitement chimique du biochar. Par exemple, la capacitĂ© de sorption maximale (Qm) (Cd(II)) a Ă©tĂ© augmentĂ©e de 15,4 ”mol g−1 sur le biochar de SSD brut Ă  306,1 ”mol g−1 aprĂšs le traitement au KOH (au pH initial de 5,0). De mĂȘme, la valeur de Qm du Pb(II) a augmentĂ© de 6,5 mg g−1 (biochar de SSD) Ă  25 mg g−1 sur le biochar modifiĂ© par H2O2. NĂ©anmoins, la capacitĂ© de sorption du biochar SSD modifiĂ© par KOH n'a pas Ă©tĂ© dĂ©terminĂ©e en raison de l’impossibilitĂ© de modĂ©liser les donnĂ©es expĂ©rimentales avec le modĂšle de l’isotherme de Langmuir. Cela indique qu'un lavage insuffisant du biochar SSD modifiĂ© par KOH peut inhiber la sorption de Pb(II) en raison de la libĂ©ration de composĂ©s organiques dissous de ce biochar pouvant interagir avec Pb2+ et ainsi former des complexes Pb-ligand dans la solution. Ceci met en Ă©vidence le rĂŽle important de la procĂ©dure de lavage sur l’efficacitĂ© de la sorption du Pb(II) sur le biochar. L’étude de la distribution de l’état redox de l'arsenic a montrĂ© une oxydation importante (70%) de As (III) en As (V) dans le biochar SSD traitĂ© au KOH avec lavage par batch, tandis que l'As(III) a Ă©tĂ© partiellement oxydĂ© (7%) dans le biochar SSD traitĂ© au KOH avec un lavage en colonne. L'extraction de l’arsenic fixĂ© par les biochars suivie d'une analyse par chromatographie en phase liquide a Ă©tĂ© Ă©tablie avec succĂšs pour rĂ©cupĂ©rer quantitativement de l'As(III, V) Il a Ă©tĂ© montrĂ© que l'oxydation de As(III) Ă©tait fortement induite par le biochar et, dans une moindre mesure, par des composĂ©s dissous libĂ©rĂ©s par les biochars.En rĂ©sumĂ©, les biochars de digestat modifiĂ©s par traitement chimique suivi d'une procĂ©dure de lavage appropriĂ©e du biochar peuvent ĂȘtre utilisĂ©s avec succĂšs comme sorbants de Pb(II), Cd(II) et As(III, V). En outre, l'Ă©volution de la distribution redox de l’arsenic dans les biochars et les solutions liquides Ă  l'aide de l'extraction de liquide solide et de l'analyse chromatographique a Ă©tĂ© dĂ©terminĂ©e. Cela permet de mieux comprendre la transformation entre As(III) et As(V) lors la sorption de l’arsenic sur les biochar

    Assessing arsenic redox state evolution in solution and solid phase during As(III) sorption onto chemically-treated sewage sludge digestate biochars

    No full text
    International audienceThis work aimed to determine arsenic redox state distribution during As(III) sorption onto 14 chemically-modified biochars. A solid-liquid extraction protocol using phosphoric (0.3 M) and ascorbic (0.5 M) acids at 80 °C for 20 min was established to ensure a quantitative recovery and stability of As(III) during the extraction. During sorption experiments, the redox conversions of As occurred and As(III) was either stable or partially oxidized in solution. The As distribution strongly varies depending on the biochar chemical treatment performed as well as the selected washing procedures (batch versus column washings). As(III) oxidation was favored with the KOH-modified biochar washed in batch mode. This oxidation was mostly induced by the biochar solid compounds rather than by soluble compounds released in solution. The As redox state distribution of As sorbed onto the biochars was successfully assessed using the extraction procedure. Arsenic was predominantly sorbed as As(III) (76-92%) onto the biochars

    Anaerobic Digestion of Fruit Waste Mixed With Sewage Sludge Digestate Biochar: Influence on Biomethane Production

    No full text
    International audienceThe main aim of this study was to evaluate the biomethane potential (BMP) of fruit waste by incorporating additives such as sewage sludge biochar at different inoculum-to-substrate ratios (ISRs) of 2, 1.5, and 1 (wt./wt.). The results showed an improvement in the maximum methane production by 13, 20, and 27% upon the addition of sewage sludge biochar produced at 350 ‱ C for ISR of 2, 1.5, and 1 (wt./wt.), respectively, and an increase 12, 18, and 22% for the added biochar produced at 550 ‱ C for ISR of 2, 1.5, and 1 (wt./wt.), respectively, compared to the BMP tests performed without the addition of biochar (i.e., the control). Biochar addition reduced volatile fatty acid (VFA) formation during the digestion of fruit waste as compared to the control reactor, which is a strong indication that the metabolic process of the system was streamlined to methanogenesis. The maximum methane yield for the tested fruit substrates was 285.7 mL CH4/g in the presence of biochar prepared at a low temperature (350 ‱ C). This value is higher than one obtained with same amount of biochar prepared at a higher temperature (550 ‱ C). The results from this study showed that the effectiveness of the anaerobic digestion process depends on the ISR, biochar dose, and the pyrolysis temperature used for the production of the sewage sludge digestate biochar

    Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As(III and V) and Cd(II) sorption

    Get PDF
    International audienceThis work seeks to extend the knowledge on the effect of chemical treatment of sewage sludge digestate (SSD)-derived biochar for the As(III and V) and Cd(II) sorption ability using potassium hydroxide (KOH) or hydrogen peroxide (H2O2). Results showed the increases of the pH of point of zero charge, the Brunauer-Emmett-Teller (BET) surface area and cation exchange capacity (CEC) after chemical treatment of biochar. The sorption ability was enhanced from 1.6â€ŻÎŒmol g−1 (As(V)) and 16.1â€ŻÎŒmol g−1 (Cd(II)) on raw biochar to 8.5â€ŻÎŒmol g−1 (As(V)) and 318.5â€ŻÎŒmol g−1 (Cd(II)) on KOH-modified biochar. Furthermore, arsenic redox distribution showed a large oxidation (70%) of As(III) to As(V) in KOH-biochar with batch washing, while a partial oxidation (7%) was observed in KOH-biochar with batch and subsequent column washing. The washing procedures after KOH treatment play an important role on arsenic sorption, due to the release of phosphate (PO43−) as well as organic matter from the biochar that may subsequently lead to the oxidation of As(III) to As(V). Our findings highlight the potential influence of biochar on the redox transformation of As(III) to As(V) and therefore requires a careful assessment while investigating the fate of As in aquatic environments

    Anaerobic digestion of fruit waste mixed with sewage sludge digestate biochar: Influence on biomethane production

    No full text
    The main aim of this study was to evaluate the biomethane potential (BMP) of fruit waste by incorporating additives such as sewage sludge biochar at different inoculum-to-substrate ratios (ISRs) of 2, 1.5, and 1 (wt./wt.). The results showed an improvement in the maximum methane production by 13, 20, and 27% upon the addition of sewage sludge biochar produced at 350°C for ISR of 2, 1.5, and 1 (wt./wt.), respectively, and an increase 12, 18, and 22% for the added biochar produced at 550°C for ISR of 2, 1.5, and 1 (wt./wt.), respectively, compared to the BMP tests performed without the addition of biochar (i.e., the control). Biochar addition reduced volatile fatty acid (VFA) formation during the digestion of fruit waste as compared to the control reactor, which is a strong indication that the metabolic process of the system was streamlined to methanogenesis. The maximum methane yield for the tested fruit substrates was 285.7 mL CH4/g in the presence of biochar prepared at a low temperature (350°C). This value is higher than one obtained with same amount of biochar prepared at a higher temperature (550°C). The results from this study showed that the effectiveness of the anaerobic digestion process depends on the ISR, biochar dose, and the pyrolysis temperature used for the production of the sewage sludge digestate biochar
    corecore