126 research outputs found

    High Resolution K-band Spectroscopy of MWC 480 and V1331 Cyg

    Full text link
    We present high resolution (R=25,000-35,000) K-band spectroscopy of two young stars, MWC 480 and V1331 Cyg. Earlier spectrally dispersed (R=230) interferometric observations of MWC 480 indicated the presence of an excess continuum emission interior to the dust sublimation radius, with a spectral shape that was interpreted as evidence for hot water emission from the inner disk of MWC 480. Our spectrum of V1331 Cyg reveals strong emission from CO and hot water vapor, likely arising in a circumstellar disk. In comparison, our spectrum of MWC 480 appears mostly featureless. We discuss possible ways in which strong water emission from MWC 480 might go undetected in our data. If strong water emission is in fact absent from the inner disk, as our data suggest, the continuum excess interior to the dust sublimation radius that is detected in the interferometric data must have another origin. We discuss possible physical origins for the continuum excess.Comment: 29 pages, 5 figures, to appear in Ap

    Spin down of protostars through gravitational torques

    Get PDF
    Young protostars embedded in circumstellar discs accrete from an angular momentum-rich mass reservoir. Without some braking mechanism, all stars should be spinning at or near break-up velocity. In this paper, we perform simulations of the self-gravitational collapse of an isothermal cloud using the ORION adaptive mesh refinement code and investigate the role that gravitational torques might play in the spin-down of the dense central object. While magnetic effects likely dominate for low mass stars, high mass and Population III stars might be less well magnetised. We find that gravitational torques alone prevent the central object from spinning up to more than half of its breakup velocity, because higher rotation rates lead to bar-like deformations that enable efficient angular momentum transfer to the surrounding medium. We also find that the long-term spin evolution of the central object is dictated by the properties of the surrounding disc. In particular, spiral modes with azimuthal wavenumber m=2m=2 couple more effectively to its spin than the lopsided m=1m=1 mode, which was found to inhibit spin evolution. We suggest that even in the absence of magnetic fields, gravitational torques may provide an upper limit on stellar spin, and that moderately massive circumstellar discs can cause long-term spin down.Comment: 13 pages, 17 figures, 1 table. Accepted by MNRAS. Updated reference

    Fairness as a Source of Hysteresis in Employment and Relative Wages

    Get PDF
    This paper analyses the inlfuence of norms of fairness on wage formation. Fairness is defined by \u27real-wage\u27 and \u27relative-wage\u27 norms that relate wage offers to workers\u27 own current wage and to the wages of other groups of workers, and, to avoil shirking, firms pay their wages. The wage norms change endogenously, and the result is hysteresis with respect to both employment and the distribution of wages. An extention of the model that allows \u27induced overeducation\u27 may help explain trends in wage inequality

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Synthesis and Stereochemistry of Hydroporphyrins

    Full text link

    über die Experimentellen Grundlagen der Proteinkörper-Therapie

    No full text
    corecore