15 research outputs found

    Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Harmful Algae 14 (2012): 271-300, doi:10.1016/j.hal.2011.10.025.Over the last decade, our understanding of the environmental controls on Pseudo-nitzschia blooms and domoic acid (DA) production has matured. Pseudo-nitzschia have been found along most of the world's coastlines, while the impacts of its toxin, DA, are most persistent and detrimental in upwelling systems. However, Pseudo-nitzschia and DA have recently been detected in the open ocean's high-nitrate, low-chlorophyll regions, in addition to fjords, gulfs and bays, showing their presence in diverse environments. The toxin has been measured in zooplankton, shellfish, crustaceans, echinoderms, worms, marine mammals and birds, as well as in sediments, demonstrating its stable transfer through the marine food web and abiotically to the benthos. The linkage of DA production to nitrogenous nutrient physiology, trace metal acquisition, and even salinity, suggests that the control of toxin production is complex and likely influenced by a suite of environmental factors that may be unique to a particular region. Advances in our knowledge of Pseudo-nitzschia sexual reproduction, also in field populations, illustrate its importance in bloom dynamics and toxicity. The combination of careful taxonomy and powerful new molecular methods now allow for the complete characterization of Pseudo-nitzschia populations and how they respond to environmental changes. Here we summarize research that represents our increased knowledge over the last decade of Pseudo-nitzschia and its production of DA, including changes in worldwide range, phylogeny, physiology, ecology, monitoring and public health impacts

    Composition and toxicity of residual bunker C fuel oil in intertidal sediments after 30 years

    Get PDF
    In 1970, approximately 2000 m3 of Bunker C crude oil impacted 300 km of Nova Scotia's coastline following the grounding of the tanker Arrow. Only 10% of the contaminated coast was subjected to cleanup, the remainder was left to cleanse naturally. To determine the long-term environmental impact of residual oil from this spill event, samples of sediment and interstitial water were recovered in 1993, 1997 and 2000 from a sheltered lagoon in Black Duck Cove. This heavily oiled site was intentionally left to recover on its own. Visual observations and chemical analysis confirmed that substantial quantities of the weathered cargo oil were still present within the sediments at this site. However, direct observations of benthic invertebrate abundance suggest that natural processes have reduced the impacts of the residual oil. To confirm this hypothesis, sediment and interstitial water samples from Black Duck Cove were assessed with a comprehensive set of biotests and chemical assays.Residual oil in the sediments had limited effect on hepatic CYP1A protein levels and mixed function oxygenase (MFO) induction in winter flounder (Pleuronectes americanus). No toxicity was detected with the Microtox solid phase test (Vibrio fischeri). Significant sediment toxicity was detected by the amphipod survival test (Eohaustorius estuarius) in four out of the eight contaminated sediments. Interstitial water samples were deemed non-toxic by the Microtox 100% test (Vibrio fischeri) and the echinoid fertilization test (Lytechinus pictus). Sediment elutriates were also found to be non-toxic in the grass shrimp embryo-larval toxicity (GSELTOX) test (Palaemonetes pugio).Recovery at this contaminated site is attributed to natural processes that mediated biodegradation and physical removal of oil from the sediments. In support of the latter mechanism, mineralization experiments showed that all test sediments had the capacity for hexadecane, octacosane and naphthalene degradation, while chemical analysis confirmed that the Bunker C oil from the Arrow had undergone substantial biodegradation.NRC publication: Ye

    Composition and toxicity of residual bunker C fuel oil in intertidal sediments after 30 years

    No full text
    In 1970, approximately 2000 m3 of Bunker C crude oil impacted 300 km of Nova Scotia's coastline following the grounding of the tanker Arrow. Only 10% of the contaminated coast was subjected to cleanup, the remainder was left to cleanse naturally. To determine the long-term environmental impact of residual oil from this spill event, samples of sediment and interstitial water were recovered in 1993, 1997 and 2000 from a sheltered lagoon in Black Duck Cove. This heavily oiled site was intentionally left to recover on its own. Visual observations and chemical analysis confirmed that substantial quantities of the weathered cargo oil were still present within the sediments at this site. However, direct observations of benthic invertebrate abundance suggest that natural processes have reduced the impacts of the residual oil. To confirm this hypothesis, sediment and interstitial water samples from Black Duck Cove were assessed with a comprehensive set of biotests and chemical assays.Residual oil in the sediments had limited effect on hepatic CYP1A protein levels and mixed function oxygenase (MFO) induction in winter flounder (Pleuronectes americanus). No toxicity was detected with the Microtox solid phase test (Vibrio fischeri). Significant sediment toxicity was detected by the amphipod survival test (Eohaustorius estuarius) in four out of the eight contaminated sediments. Interstitial water samples were deemed non-toxic by the Microtox 100% test (Vibrio fischeri) and the echinoid fertilization test (Lytechinus pictus). Sediment elutriates were also found to be non-toxic in the grass shrimp embryo-larval toxicity (GSELTOX) test (Palaemonetes pugio).Recovery at this contaminated site is attributed to natural processes that mediated biodegradation and physical removal of oil from the sediments. In support of the latter mechanism, mineralization experiments showed that all test sediments had the capacity for hexadecane, octacosane and naphthalene degradation, while chemical analysis confirmed that the Bunker C oil from the Arrow had undergone substantial biodegradation.NRC publication: Ye

    Calanus spp. –vectors for the biotoxin, domoic acid, in the Arctic?

    No full text
    Three Calanus species, Calanus glacialis, Calanus finmarchicus and Calanus hyperboreus, which are the most important zooplankton herbivores in Western Greenland, were fed with unialgal cultures of toxic Pseudo-nitzschia seriata and non-toxic Pseudo-nitzschia delicatissima. All three copepod species grazed on toxic P. seriata and also accumulated domoic acid during the grazing. There were no differences in ingestion rates between toxic and non-toxic Pseudo-nitzschia species in any of the copepods. C. finmarchicus and C. hyperboreus grazed on toxic P. seriata during the first 6 h of the experiment but seemed to stop grazing during the last 6 h of the experiment suggesting that the copepods may have suffered some kind of physiological incapacitation due to ingestion of domoic acid. C. glacialis grazed on toxic P. seriata continuously during the whole experiment, probably due to the lower domoic acid cell quota of P. seriata during the experiment on C. glacialis than on the other two copepod species. The depuration experiment on C. glacialis indicated that the copepods still retained domoic acid after 10 h of depuration in filtered sea water. The results show that the three Calanus species are potential vectors for domoic acid to higher trophic levels in the Arctic

    Effects of depuration on histopathological changes in tilapia ( Oreochromis niloticus

    No full text
    Cylindrospermopsin (CYN) is a highly water-soluble cytotoxin produced by several species of freshwater cyanobacteria and it is considered the second most studied cyanotoxin worldwide. CYN acts as a potent protein and glutathione synthesis inhibitor, as well as inducing genotoxicity, oxidative stress and histopathological alterations. Studies concerning the depuration of cyanobacterial toxins in aquatic organisms, especially in fish, are of great interest for fish economy and public health, but are scarce in the case of CYN. This is the first study reporting the ability of depuration (3 − 7 days) in reversing or ameliorating the histopathological lesions induced in liver, kidney, heart, intestines, and gills of tilapia (Oreochromis niloticus) due to exposure by immersion to repeated doses of a CYN-containing culture of A. ovalisporum for 14 days. The main histopathological changes induced by CYN were glucogenic degeneration and loss of the normal hepatic cord-structure (liver), hyperemia, dilated Bowman's capsule and cellular tumefaction (kidney), myofibrolysis, hemorrhages and edema (heart), necrosis and partial loss of microvilli (gastrointestinal tract), and hyperemia and inflammatory cells infiltrates (gills). After 3 days of depuration, gills were totally recovered, while the liver, kidney, and gastrointestinal tract required 7 days, and longer depuration periods may be needed for a full recovery of the heart. In addition, the morphometric study indicated that depuration managed to reverse the affectation in the hepatocytes nuclear diameters and cross sections of the proximal and distal convoluted tubules induced in CYN-exposed fish. In general, these results validate depuration as an effective practice for detoxification of fish contaminated with CYN.Ministerio de Ciencia e Innovación (AGL2009-10026 y AGL2015-64558-R)Junta de Andalucía (P09-AGR-4672

    Intra- and interspecies differences in growth and toxicity of Pseudo-nitzschia while using different nitrogen sources

    No full text
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 8 (2009): 792-810, doi:10.1016/j.hal.2009.01.003.Clonal cultures of plankton are widely used in laboratory experiments and have contributed greatly to knowledge of microbial systems. However, many physiological characteristics vary drastically between strains of the same species, calling into question our ability to make ecologically relevant inferences about populations based on studying one or a few strains. This study included nineteen non-axenic strains of three species of the diatom Pseudo-nitzschia isolated primarily from the mid-Atlantic coastal region of the United States. Toxin (domoic acid) production and growth rates were measured in cultures using different nitrogen sources (NH4+, NO3- and urea) and growth irradiances. The strains exhibited broad differences in growth rate and toxin content even between strains isolated from the same water sample. The influence of bacteria on toxin production was not investigated. Both P. multiseries clones produced toxin, yet preferentially used different nitrogen sources. Only two out of nine P. calliantha and two out of five P. fraudulenta isolates were toxic and domoic acid content varied by orders of magnitude. All three species had variable intraspecies growth rates on each nitrogen source, but P. fraudulenta strains had the broadest range. Light-limited growth rate and maximum growth rate in P. fraudulenta and P. multiseries varied with species. These findings show the importance of defining intra- and interspecies variability in ecophysiology and toxicity. Ecologically relevant functional diversity in the form of ecotypes or cryptic species appears to be present in the genus Pseudo-nitzschia.This research was supported by EPA STAR fellowship program FP916343 (A.E.T) and funding through the Centers for Disease Control (H.A.B); DHMH OCPMP 048315G/M00B400298
    corecore