39 research outputs found

    Frequency shifts of photoassociative spectra of ultracold metastable Helium atoms : a new measurement of the s-wave scattering length

    Full text link
    We observe light-induced frequency shifts in one-color photoassociative spectra of magnetically trapped 4^4He^* atoms in the metastable 23S12^3S_1 state. A pair of ultracold spin-polarized 23S12^3S_1 helium atoms is excited into a molecular bound state in the purely long range 0u+0_u^+ potential connected to the 23S123P02^3S_1 - 2^3P_0 asymptote. The shift arises from the optical coupling of the molecular excited bound state with the scattering states and the bound states of two colliding 23S12^3S_1 atoms. We measure the frequency-shifts for several ro-vibrational levels in the 0u+0^+_u potential and find a linear dependence on the photoassociation laser intensity. Comparison with a theoretical analysis provides a good indication for the s-wave scattering length aa of the quintet (5Σg+^5\Sigma_g^+) potential, a=7.2±0.6a=7.2\pm 0.6 nm, which is significantly lower than most previous results obtained by non-spectroscopic methods.Comment: 7 pages, 4 figure

    Photoassociation spectroscopy of cold He(2(3)S) atoms

    Get PDF
    We observe vibrational states by photoassociation spectroscopy of cold He(2 3S) atoms. Photoassociation resonances are detected as peaks in the Penning ionization rate over a frequency range of 20 GHz below the atomic 2 3S1-2 3P2 transition frequency. We have observed three vibrational series, of which two can be identified. A possible mechanism to explain the observed increase of the Penning ionization rate is discussed

    Concurrent Detection of Circulating Minor Histocompatibility Antigen-Specific CD8+ T Cells in SCT Recipients by Combinatorial Encoding MHC Multimers

    Get PDF
    Allogeneic stem cell transplantation (SCT) is a potentially curative treatment for patients with hematologic malignancies. Its therapeutic effect is largely dependent on recognition of minor histocompatibility antigens (MiHA) by donor-derived CD8+ T cells. Therefore, monitoring of multiple MiHA-specific CD8+ T cell responses may prove to be valuable for evaluating the efficacy of allogeneic SCT. In this study, we investigated the use of the combinatorial encoding MHC multimer technique to simultaneously detect MiHA-specific CD8+ T cells in peripheral blood of SCT recipients. Feasibility of this approach was demonstrated by applying dual-color encoding MHC multimers for a set of 10 known MiHA. Interestingly, single staining using a fluorochrome- and Qdot-based five-color combination showed comparable results to dual-color staining for most MiHA-specific CD8+ T cell responses. In addition, we determined the potential value of combinatorial encoding MHC multimers in MiHA identification. Therefore, a set of 75 candidate MiHA peptides was predicted from polymorphic genes with a hematopoietic expression profile and further selected for high and intermediate binding affinity for HLA-A2. Screening of a large cohort of SCT recipients resulted in the detection of dual-color encoded CD8+ T cells following MHC multimer-based T cell enrichment and short ex vivo expansion. Interestingly, candidate MiHA-specific CD8+ T cell responses for LAG3 and TLR10 derived polymorphic peptides could be confirmed by genotyping of the respective SNPs. These findings demonstrate the potency of the combinatorial MHC multimer approach in the monitoring of CD8+ T cell responses to known and potential MiHA in limited amounts of peripheral blood from allogeneic SCT recipients

    Growth And The Growth Hormone-Insulin Like Growth Factor 1 Axis In Children With Chronic Inflammation:Current Evidence, Gaps In Knowledge And Future Directions

    Get PDF
    Growth failure is frequently encountered in children with chronic inflammatory conditions like juvenile idiopathic arthritis, inflammatory bowel disease and cystic fibrosis. Delayed puberty and attenuated pubertal growth spurt is often seen during adolescence. The underlying inflammatory state mediated by pro-inflammatory cytokines, prolonged use of glucocorticoid and suboptimal nutrition contribute to growth failure and pubertal abnormalities. These factors can impair growth by their effects on the growth hormone-insulin like growth factor axis and also directly at the level of the growth plate via alterations in chondrogenesis and local growth factor signaling. Recent studies on the impact of cytokines and glucocorticoid on the growth plate studies further advanced our understanding of growth failure in chronic disease and provided a biological rationale of growth promotion. Targeting cytokines using biologic therapy may lead to improvement of growth in some of these children but approximately one third continue to grow slowly. There is increasing evidence that the use of relatively high dose recombinant human growth hormone may lead to partial catch up growth in chronic inflammatory conditions, although long term follow-up data is currently limited. In this review, we comprehensively review the growth abnormalities in children with juvenile idiopathic arthritis, inflammatory bowel disease and cystic fibrosis, systemic abnormalities of the growth hormone-insulin like growth factor axis and growth plate perturbations. We also systematically reviewed all the current published studies of recombinant human growth hormone in these conditions and discuss the role of recombinant human insulin like growth factor-1
    corecore