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Growth failure is frequently encountered in children with chronic inflammatory conditions 29 

like juvenile idiopathic arthritis, inflammatory bowel disease and cystic fibrosis. Delayed 30 

puberty and attenuated pubertal growth spurt is often seen during adolescence. The 31 

underlying inflammatory state mediated by pro-inflammatory cytokines, prolonged use of 32 

glucocorticoid and suboptimal nutrition contribute to growth failure and pubertal 33 

abnormalities. These factors can impair growth by their effects on the growth hormone-34 

insulin like growth factor axis and also directly at the level of the growth plate via alterations 35 

in chondrogenesis and local growth factor signaling. Recent studies on the impact of 36 

cytokines and glucocorticoid on the growth plate studies further advanced our understanding 37 

of growth failure in chronic disease and provided a biological rationale of growth promotion. 38 

Targeting cytokines using biologic therapy may lead to improvement of growth in some of 39 

these children but approximately one third continue to grow slowly. There is increasing 40 

evidence that the use of relatively high dose recombinant human growth hormone may lead to 41 

partial catch up growth in chronic inflammatory conditions, although long term follow-up 42 

data is currently limited. In this review, we comprehensively review the growth abnormalities 43 

in children with juvenile idiopathic arthritis, inflammatory bowel disease and cystic fibrosis, 44 

systemic abnormalities of the growth hormone-insulin like growth factor axis and growth 45 

plate perturbations. We also systematically reviewed all the current published studies of 46 

recombinant human growth hormone in these conditions and discuss the role of recombinant 47 

human insulin like growth factor-1.  48 

 49 

 50 

 51 

 52 

 53 
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 136 

1.  Introduction 137 

Impaired linear growth is commonly encountered in children with chronic inflammatory 138 

conditions such as juvenile idiopathic arthritis (JIA) (1)  inflammatory bowel disease (IBD), 139 

especially those with Crohn’s disease (CD) (2,3) and cystic fibrosis (CF) (4,5). This may be 140 

associated with delayed onset of puberty and attenuated pubertal growth spurt (6), especially 141 
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in those with IBD as these children tend to present in late childhood and adolescence [Figure 142 

1]. Poor growth may lead to short stature and a reduction in adult height is seen in a sub set of 143 

these patients despite contemporary medical therapy (7-9) which may have an impact on their 144 

quality of life (10). 145 

Sub-optimal nutrition, prolonged use of glucocorticoid (GC) and chronic 146 

inflammation itself contribute to the underlying pathophysiology of growth failure (11,12). 147 

This may be through effects on the systemic growth hormone (GH) axis that regulates linear 148 

growth or through direct effects at the level of the growth plate (13) [Figure 2]. Chronic 149 

inflammation may lead to a continuum of abnormalities in the systemic GH/ insulin like 150 

growth factor-1 (IGF-1) axis including relative GH insufficiency, GH/IGF-1 resistance due to 151 

impairment of IGF binding proteins, down regulation of GH/IGF receptors and / or 152 

impairment of local GH and IGF-1 signaling pathways [Figure 3].  153 

Determining the prevalence of growth failure from current published studies in 154 

children with JIA, IBD and CF is very challenging due to the different definitions used. 155 

Studies defining growth failure based on stature are not helpful, as this may underestimate the 156 

prevalence of faltering growth, given that a child with relatively normal height may have been 157 

growing very poorly over a period of time. Stature also needs to be interpreted in the context 158 

of the child’s mid-parental height.  159 

Evaluating growth rate (height velocity) maybe a better method to determine the 160 

prevalence of growth failure but in a group of children where a degree of delayed puberty 161 

maybe relatively common, comparing height velocity (HV) purely based on age and gender 162 

may be misleading. Due to the unpredictability of the inflammatory process, HV is also likely 163 

to vary depending on the disease status rather than time course from diagnosis compared to 164 

other conditions where treatment protocols may be fixed (eg childhood cancers). HV needs to 165 

be interpreted in the context of pubertal staging or bone age as it varies according to gender 166 

and pubertal status (14). In healthy girls, peak HV is attained at the age of approximately 12 167 

years, corresponding to early breast stage (stage 2) whereas in healthy boys this is usually at 168 

the age of 13.5 years corresponding to later stages of puberty (genital stage 4, 10-12 ml testes) 169 
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(15,16).  There is no consensus regarding the most appropriate method to interpret HV in 170 

these children. In addition, normative data for HV are from small groups of children evaluated 171 

in the 70s.  172 

Consideration must be given to bone age assessment in children with chronic disease. 173 

Interpretation of bone age may be inaccurate if performed in the hand affected by arthritis 174 

(17). The use of change in height (Ht) SDS maybe a better method of defining growth 175 

problems in longitudinal growth studies in children with chronic disease as recently suggested 176 

as a way to report response to growth promoting therapy (18) but may also need to be 177 

interpreted in the context of puberty and/or skeletal maturation for adolescents. 178 

Targeting the inflammatory process aggressively using immunomodulators (eg 179 

azathioprine, methotrexate) and anti-cytokine therapy (eg infliximab, etanercept, 180 

adalimumab), minimizing the use of systemic GC to achieve adequate control of 181 

inflammation and optimizing nutrition may be associated with improvement in markers of the 182 

GH-IGF axis and are paramount for ensuring normal growth and pubertal development 183 

(19,20). However, almost one third of children with JIA and CD treated with contemporary 184 

regimens continue to grow slowly (18) and improvement in disease activity does not seem to 185 

normalize linear growth in these children (21,22). In adolescents with CF, faltering growth 186 

often precedes the diagnosis of CF related diabetes (23). Whilst treatment with insulin may 187 

improve lung function and body mass index (BMI) in children with CF related diabetes 188 

(24,25), the impact of insulin on improving growth and pubertal development is still unclear 189 

(23). In an individual with CF and faltering growth, assessment of glucose homeostasis 190 

should be performed to exclude CF diabetes. Optimization of metabolic control with insulin 191 

should be performed in those already with established CF related diabetes and poor growth.  192 

Pubertal induction with sex steroid may be considered in those individuals who are 193 

growing slowly in association with delayed puberty despite optimization of disease status and 194 

nutrition, although the timing, route of administration, dose of sex steroid and duration of 195 

treatment is unclear. Abnormal bone development is also seen in these adolescents (26-28) 196 

and in these individuals with chronic disease, decisions regarding pubertal induction will also 197 
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need to include careful assessment of bone mass and the potential benefit of sex steroid on 198 

bone acquisition. It is beyond the scope of this current review to address issues of pubertal 199 

induction in chronic disease which we feel is an area of research often neglected. 200 

The availability of recombinant human growth hormone (rhGH) in the past 30 years 201 

has led to its use in non-growth hormone deficient conditions (29) such as Turner Syndrome 202 

(30-32), small for gestational age (33,34), idiopathic short stature (35) , short stature 203 

homeobox (SHOX) deficiency (36), Prader Willi Syndrome (37) and chronic renal 204 

insufficiency (38). In younger pre-pubertal children with chronic disease and in those with 205 

pubertal delay who continue to grow slowly despite pubertal induction, rhGH may be a 206 

therapeutic option. Emerging therapeutic clinical trials of rhGH in pediatric JIA, IBD and CF 207 

suggest that short term linear growth may improve with rhGH therapy. These studies 208 

demonstrate that rhGH, especially at a higher dose, may be able to overcome the relative GH 209 

resistant state seen in chronic disease (39).  210 

The review aims to provide the most up to date summary of growth failure, systemic 211 

abnormalities in the GH/IGF-1 axis and local growth plate disturbances observed in children 212 

with JIA, IBD and CF. In addition, we will summarize and critically evaluate the published 213 

literature on the role of rhGH and rhIGF-1 as growth promoting therapies in these children. 214 

This review is timely given that management of chronic disease has changed 215 

significantly over the last 15 years. Modern therapies have opened up the therapeutic options 216 

of management of these childhood chronic disease but a subset are still non responders to 217 

these treatment and in some instances the occurrence of significant adverse effects preclude 218 

the use of these modern therapies. It is for these reasons that poor growth and abnormalities of 219 

pubertal development may still be encountered and the management of these children and 220 

adolescents can be particularly complex. The full PubMed database was searched with no 221 

time restriction in July 2015 using the following keywords: inflammatory bowel disease, 222 

crohn’s disease, crohn disease, ulcerative colitis, cystic fibrosis, juvenile idiopathic arthritis, 223 

juvenile arthritis, juvenile rheumatoid arthritis in combination with growth hormone, insulin 224 
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like growth factor-1 and IGF-1. Non-English articles were excluded. Relevant articles were 225 

obtained and information synthesized into this literature review by the authors.  226 

 227 

2. Background physiology of normal linear growth 228 

 In this section, we will review the normal regulation of linear growth via systemic 229 

and local factors. The reader is however referred to other recent thorough and excellent 230 

reviews on this area (40-42). It is generally accepted that the GH/IGF-1 axis is a main 231 

regulator of linear growth via its endocrine effects at a systemic level and also via local 232 

autocrine/paracrine mechanisms. Understanding of the systemic and local regulation of 233 

normal linear growth has advanced significantly over recent years. Information on how the 234 

systemic GH/IGF-1 axis interacts with local paracrine factors in the regulation of normal 235 

linear growth is still unknown. Chronic disease via chronic inflammation, glucocorticoid and 236 

poor nutrition can impact growth at multiple levels via their effects on the GH/IGF-1 axis 237 

systemically and at the level of target organ.  238 

 239 

2.1 Systemic regulation of linear growth 240 

The endocrine regulation of normal linear growth involves pituitary derived GH and 241 

the IGF system. It was initially thought that GH itself did not exert its effects directly on 242 

target organs but did so via IGF-1, produced in the liver. It is now known that both GH and 243 

IGF-1 exert separate and independent effects on growth. GH can act to induce the expression 244 

and action of local IGF-1 at the level of the growth plate to lead to increase bone growth (43). 245 

Local injection of GH directly into cartilage growth plates of the hind limbs of 246 

hypophysectomised rats produced significant increase in lengths of the injected limb 247 

compared with the non injected contra lateral limb, pointing to the direct effect of GH on 248 

regulating growth (44). In addition, if all the growth promoting actions of GH are mediated by 249 

IGF-1, then the GH receptor and IGF-1 null mice should be similar to the double GH receptor 250 

and IGF-1 receptor mutant mice (45). Lupu et al showed that post natal mice with combined 251 

GH receptor gene and IGF-1 gene deletion had the smallest size, whereas mice with GH 252 
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receptor gene deletion only were larger in size than those with IGF-I gene deletion (45). 253 

Several other groups also found that body size and tibial growth rate of mice with GH gene 254 

deletion were lower than those with IGF-I gene deletion (46-48). Numerous studies have 255 

produced conflicting results and are unable to pinpoint to the precise mechanism of the action 256 

of GH and IGF-I on the epiphyseal growth plate (49,50).  257 

The relative contribution of hepatic generated IGF-1 to epiphyseal bone growth is 258 

currently unclear (51). In the liver IGF-I deficient (LID) mice, deletion of the liver gene of 259 

IGF-I reduced circulating IGF-I to 25% of the wild type mice. Bone length and body size of 260 

the LID mice were not different from the wild type mice. IGF-I mRNA expression in a 261 

variety of tissues including heart, muscle, fat, spleen and kidney were similar between the 262 

LID mice and the wild type mice, suggesting that there is no compensation from IGF-I 263 

derived from other tissues accounting for the preservation of linear growth in the LID mice 264 

(52). A combined knock out of LID, acid labile subunit knock-out (ALSKO), IGF binding 265 

protein 3 knock-out (BP3KO) had significantly reduced systemic levels of IGF-1 but only a 266 

modest degree of growth retardation, pointing to the possibility of the importance of local 267 

factors regulating bone growth (53).  268 

Mice with targeted deletion of IGF-I in chondrocytes had normal systemic levels of 269 

IGF-I but 40% reduction in local IGF-I.  Body length was however reduced by 27% (54). On 270 

the other hand, elevated systemic levels of IGF-1 were able to rescue the growth impairment 271 

in IGF-1 null mice pointing to the role of systemic IGF-1 on autocrine/paracrine effects (55). 272 

The IGF-1 null mice also have compensatory increase in local IGF-2 locally which may 273 

explain the modest growth impairment in that model. GH promote growth plate 274 

chondrogenesis independent of local IGF-1 and IGF-2 levels (56) and addition of rhIGF-1 to 275 

rhGH treatment in healthy female mice did not lead to improvement in bone growth (57). A 276 

study in a knock in mouse model of mutated IGF-1 with markedly low total IGF-1 and 277 

formation with IGFBPs but high levels of unbound IGF-1 showed significantly increased 278 

body size pointing to the role of free bioavailable IGF-1 on regulation of growth (58)  279 
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It has been suggested that an element of redundancy may exist between local and 280 

endocrine growth factors like IGF-1, where the absence of one source (systemic vs. local) 281 

may be compensated by the other. The regulation of GH and IGF-1 systemically and at local 282 

level may differ in health and in chronic disease (41).  283 

 284 

2.2 Growth plate 285 

The process of bone growth relies upon chondrocytes produced at the epiphyseal 286 

growth plate, which are progressively synthesized and replaced by bone with accompanying 287 

longitudinal (endochondral) bone growth. Growth plate (epiphyseal plate) is a layer of hyaline 288 

cartilage in growing bone located in the metaphysis between the epiphysis and diaphysis. It is 289 

left over cartilage from the endochondral ossification. The epiphyseal plate consists of four 290 

zones (59)  291 

The zone of resting cartilage is near the epiphyses and consists of a small, scattered 292 

chondrocytes. These cells do not function in bone growth therefore; these are termed as 293 

“resting”. Resting zone chondrocytes replicate at a slow rate (60) and act as stem cells that 294 

replenish the pool of proliferative chondrocytes (61).  295 

The zone of proliferating cartilage consists of slightly larger chondrocytes arranged 296 

like stack of coins. Chondrocytes divide to replace those that die at the diaphyseal surface of 297 

the epiphyseal plate. Proliferative zone chondrocytes replicate at a high rate and the cells line 298 

up along the long axis of the bone (60,62) 299 

The zone of hypertrophic cartilage consists of even larger chondrocytes that are also 300 

arranged in columns. The lengthwise expansion of the epiphyseal plate is the result of cell 301 

division in the zone of proliferating cartilage and maturation of the cells in the zone of 302 

hypertrophic cartilage. During the hypertrophic phase, chondrocytes increase their height 303 

about 6-10 fold. Hypertrophic differentiation makes a significant contribution to longitudinal 304 

growth (63). These chondrocytes calcify the surrounding extracellular matrix and produce 305 

factors that attract the invading bone cells and blood vessels (64). Prior to blood vessels 306 

invading the chondrocytes lacuna, they undergo apoptosis (65) 307 
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 308 

2.2.1 Local growth plate regulation 309 

GH acts locally to recruit resting chondrocytes into the proliferative state as well as 310 

stimulate local production of IGF- which in turn stimulates proliferation of proliferative 311 

chondrocytes. Infusion of IGF-1 to hypophysectomized rats stimulate chondrocytes at all the 312 

stages of differentiation, including the hypertrophic zone, clearly pointing to a role of IGF-1 313 

at the local level (66,67).  314 

At a local level, GH action may be regulated by suppressor of cytokine signalling 2 315 

SOCS2) (68). The SOCS2 knockout mice exhibit an overgrowth phenotype associated with 316 

increased GH/IGF-1 signalling leading to wider proliferative and hypertrophic zones of the 317 

growth plate (69). Studies using chondrocytes and metatarsals from the SOCS2 knockout 318 

mice showed increased GH signalling locally and maybe independent of local IGF-1 (70).  319 

The local regulation of growth also involves several other paracrine signalling like 320 

fibroblast growth factors, Indian hedgehog, parathyroid hormone-related protein, bone 321 

morphogenetic proteins and vascular endothelial growth factor (40). How these systems 322 

interact with GH/IGF-1 regulation in health and disease is currently still unknown.  323 

 324 

3.  Inflammation and growth plate abnormalities 325 

3.1 Effects of inflammatory cytokines on the growth plate 326 

Various cell and organ culture approaches have borne evidence demonstrating the 327 

adverse effects of proinflammatory cytokines on growth plate chondrogenesis (71) [Figure 4].  328 

IL-1-β and TNFα decrease both the width of the proliferating zone and the rate of 329 

endochondral bone growth; a possible consequence of altered chondrocyte proliferation, 330 

differentiation and apoptosis rates (71-74). Furthermore, IL-1β and TNFα reduce chondrocyte 331 

expression of cartilage matrix proteins including aggrecan and collagen types-II and -X 332 

(71,75,76). The addition of IL-6 alone appears to have little effect on growth plate 333 

chondrocytes although it may be able to inhibit the early differentiation steps of chondrocyte 334 

precursors (71,73,77-79).  It is possible that IL-6 needs to be added in combination with 335 
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soluble IL-6R to have an effect on chondrocyte proliferation, differentiation and bone growth 336 

(73,80,81). Importantly both IL-1β and TNF-α are also produced locally by growth plate 337 

chondrocytes to regulate physiological bone growth and that the inhibition of endogenous 338 

levels leads to improved longitudinal bone growth (82,83).  The growth and long bone length 339 

of the IL-1 receptor type 1 knock-out mouse were however normal despite a narrower growth 340 

plates due to a smaller hypertrophic zone (84). 341 

The direct analysis of proinflammatory cytokines on linear bone growth has been 342 

aided by the study of cultured fetal metatarsal bones.  IL1-β, IL-6 and TNF-α inhibit linear 343 

growth and in combination they have an additive growth inhibitory effect (71,73,81). 344 

Furthermore, TNF-α and IL1-β also act in synergy to induce IL-6 production in fetal 345 

metatarsals (81). There is also restricted potential for recovery of growth plate chondrogenesis 346 

and longitudinal bone growth following prolonged exposure to pro-inflammatory cytokines 347 

(71) [Figure 5].  This mirrors the clinical impression of greater degree of growth impairment 348 

in those children with longer periods of symptoms prior to diagnosis (85). Addition of 349 

antibodies to TNF-α and IL1-β lead to partial rescue of bone growth in the metatarsal model 350 

(73) [Figure 6a]. 351 

 In addition to analyzing the effects of recombinant cytokines on metatarsal growth, 352 

approaches using biological fluids from children with JIA have also been informative.  These 353 

preliminary studies disclosed that serum from affected children disturbed chondrogenesis and 354 

linear bone growth.  The results with synovial fluid were less consistent, emphasizing the 355 

interindividual variation of the observed effects (86) . As opposed to the partial rescue of bone 356 

growth in metatarsals exposed to cytokines (TNF-α and IL1-β), addition of antibodies to 357 

TNF-α, IL1-β and IL-6 failed to show any improvement in metatarsal growth when exposed 358 

to biological fluid from a child with systemic JIA where a whole range of inflammatory 359 

cytokines may be detected other than TNF-α, IL1-β and IL-6 (86) [Figure 6b]. 360 

Inflammatory cytokines may disrupt growth plate function by inhibiting IGF-1 361 

intracellular signaling (87,88) . Evidence for this is however limited as neither TNF-α, IL-6 362 

nor IL-1β appear to affect IGF-1 receptor expression (71,74,89-91). Alternatively, 363 
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proinflammatory cytokines may disrupt signaling downstream of the IGF-1R.  TNF-α, IL-6 364 

and IL-1β can attenuate IGF-1-induced activation of both the MAPK/ERK 1/2 and the PI-3K 365 

pathways in chondrocytes (74,92). In myoblasts, IL-1β can inhibit the ability of IGF-1 to 366 

phosphorylate tyrosine residues on both of its downstream docking proteins, IRS-1 and IRS- 2 367 

but it is as yet unknown if this also occurs in chondrocytes (87). Proinflammatory cytokines 368 

may also disrupt chondrocyte GH signaling. IL-6 and oncostatin M can activate JAK/STAT 369 

signaling leading to down-regulation of type II collagen, aggrecan core, and link protein 370 

transcription in articular chondrocyte (80,93). Likewise, IL-1β can antagonize GH signaling 371 

through STAT5 in hepatocytes whilst activating STAT3 in mouse kidney tumor cells (94,95). 372 

Whilst the mechanisms by which JAK/STAT signaling is blunted in inflammatory conditions 373 

are unclear, there is an emerging body of evidence implicating a role for the SOCS family of 374 

proteins which can inhibit  JAK2 and STAT activation in a negative feedback loop, and 375 

whose expression is stimulated pro-inflammatory cytokines (96-101). 376 

 377 

 378 

3.2 Effects of glucocorticoid on the growth plate  379 

The growth-suppressing effects of GC appear multifactorial with some GC actions 380 

modifying skeletal responses to the GH/IGF-I axis whereas other evidence indicates a direct 381 

effect of GH on growth plate chondrocytes.  Common to both mechanisms is the interaction 382 

of GC with its cytosolic receptor (GR) which results in the modulation of gene transcription.  383 

This is accomplished via several different mechanisms. First, GCs bind to a cytosolic GC 384 

receptor attached to a heat-shock protein (HSP). The HSP dissociates, and the GR dimerizes 385 

and translocate to the nucleus and binds to promoters on the target gene known as GC 386 

response elements (GRE), resulting in the activation or repression of a specific set of 387 

transcription factors (102,103). It has also been shown that the GR is capable of binding 388 

directly to specific transcription factors such as nuclear factor-κB (NFκB) and activator 389 

protein-1 (AP-1) which are involved in the up-regulation of inflammatory genes. This 390 
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mechanism is ligand-independent and does not require receptor dimerization, therefore 391 

rendering it genetically separable from transcriptional activation (104). 392 

GCs block the activation of the GH-receptor (GHR) and the IGF-1 receptor (IGF-IR) 393 

in chondrocytes, inhibit pulsatile GH release and reduce IGF-1R and GHR expression by 394 

chondrocytes.  GCs also impair IGF-1 signaling, predominantly via the PI3K pathway at the 395 

growth plate (92,105-110). Studies of linear bone growth have shown that dexamethasone 396 

(Dex) and IGF-1 have opposite effects, with Dex decreasing and IGF-1 increasing cell 397 

proliferation.  Furthermore, IGF-1 is able to ameliorate Dex-induced growth impairment 398 

suggesting that IGF-1 may protect the growth plate against the adverse effects of GC (111).   399 

Evidence for a direct effect of GC on the growth plate comes from a study in which 400 

pharmacological levels of local Dex infusion significantly decreased tibial growth compared 401 

with the contralateral limb (112). The GR has since been localized to proliferating and 402 

hypertrophic chondrocytes in the rat (113) as well as hypertrophic chondrocytes in the human 403 

growth plate (114). GC inhibit chondrocyte proliferation and differentiation whilst stimulating 404 

chondrocyte apoptosis and autophagy (105,110,111,115-117). The inhibitory effects of GCs 405 

on chondrocyte proliferation are consistent with GCs disrupting cell cycle progression and 406 

promoting cell cycle exit (118,119). Whilst chondrocyte p21 expression is increased by Dex 407 

this increase does not contribute to GC-induced growth retardation (120,121).The role of 408 

other cyclin dependent kinase inhibitors such as p27 in mediating GC inhibition of 409 

chondrocyte proliferation has also been questioned (122). 410 

GCs may stimulate apoptosis by altering the relative amounts of pro-apoptotic 411 

members of the Bcl-2 family such as Bax and Bid and thereby promote mitochondrial 412 

apoptosis (123,124). The Bax deficient mice display resistance to GC induced growth failure, 413 

confirming that increased apoptosis as a crucial factor in GC induced growth impairment. 414 

(123)The global effects of pharmacological GC doses on chondrocyte gene expression have 415 

been investigated using microarray technologies.  Both down-regulated genes such as secreted 416 

frizzled-related protein and IGF-I, and upregulated genes including serum/GC-regulated 417 

kinase, connective-tissue growth factor and lipocalin 2 have been identified (125,126). 418 
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Novel GCs that have the anti-inflammatory properties of conventional steroids 419 

without one or more of the side-effects have been described (127,128). One of these 420 

compounds AL-438 acts through the GR and whilst retaining full anti-inflammatory efficacy 421 

it has a GC sparing effect on chondrocyte proliferation and longitudinal bone growth 422 

(115,129) . This, and similar compounds, could prove important in the search for new anti-423 

inflammatory treatments for children. GC excess and GH deficiency impair longitudinal bone 424 

growth. After remission, growth often accelerates beyond the normal growth rate for that 425 

particular age, a phenomenon called catch-up growth (130,131). This has also been observed 426 

in many growth-retarding conditions such as Cushing’s syndrome (132), hypothyroidism 427 

(133), celiac disease (134) and anorexia nervosa/malnutrition (132). However catch-up 428 

growth in children with chronic inflammation may not be complete even after discontinuation 429 

of GC treatment if the inflammatory insult is ongoing, which is often the case. 430 

Studies in rabbits in which Dex was infused directly in the tibial growth plate resulted 431 

in slow bone growth of the treated bone but not of the contralateral vehicle-treated bone 432 

(135). After cessation of Dex infusion, tibial bone growth rate was increased compared with 433 

the contralateral leg, thereby demonstrating catch-up growth (136). Based on these findings, 434 

Gafni and Baron (137) proposed that the underlying mechanism for catch-up growth was 435 

intrinsic to the growth plate.  Specifically, the decrease in chondrocyte proliferation noted 436 

during GC treatment conserves the proliferative capacity of chondrocytes and delays 437 

chondrocyte senescence. Therefore, after discontinuation of GC treatment, the growth plate 438 

chondrocytes are less senescent i.e. have greater proliferating potential and thereby explaining 439 

the increased growth rate.  In vitro studies have also shown that Dex-treated cells retain the 440 

capacity to re-enter chondrogenesis following the withdrawal of GC (119). This implies that, 441 

although Dex arrests growth and differentiation of chondrocytes, the capacity for cells to 442 

undergo chondrogenesis is maintained in the presence of GC despite the fact that progenitor 443 

cells are quiescent.  444 

 445 

3.3 Effects of malnutrition on the growth plate 446 
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There is no doubt that undernutrition impairs skeletal growth and contributes to the 447 

growth failure in children with chronic disease. In a rat model of colitis, inflammation itself, 448 

independent of poor nutrition, explains 40% of the growth impairment (138). Aggressive 449 

nutritional therapies are often considered in children with IBD and CF, including the use of 450 

supplemental feeds and gastrostomy feeding. In the last few decades, in CD, the use of 451 

exclusive enteral nutritional (EEN) during acute relapse is generally used in place of oral GC 452 

as first line, except in those with severe disease, in most countries (139).  453 

Rat studies show that undernutrition lead to reduction in GH production  (140) but 454 

also reduction in hepatic GH sensitivity due to decreased GH receptor mRNA in the liver and 455 

resultant low systemic IGF-1 (141,142). In humans, malnutrition is associated with hepatic 456 

GH resistance but associated with elevated systemic GH levels (143,144). Short periods of 457 

fasting (2-3 days) in animal studies report reduction in linear growth by 30% compared with 458 

control animals, associated with reduction in all zones of the growth plate and decrease in 459 

chondrocyte number. In addition, GH receptor and IGF-1 expression is reduced in growth 460 

plates of mice with food restriction (145).  461 

GH resistance during fasting maybe a metabolic adaptation and fibroblast growth 462 

factor 21 (FGF21) has been identified as a key regulating factor inducing gluconeogenesis, 463 

fatty acid oxidation and ketogenesis. Short periods of fasting can lead to elevation of FGF21 464 

(146,147). The link between FGF21 and growth is demonstrated by the fact that transgenic 465 

mice over expressing FGF21 have reduced bone growth and hepatic GH resistance (148). On 466 

the other hand, FGF21 knockout mice subjected to 4 weeks of food restriction did not exhibit 467 

reduction in linear growth and did not show GH resistance (145). Increased FGF21 during 468 

periods of undernutrition affect GH sensitivity by directly inhibiting GH binding in growth 469 

plate chondrocytes with no impact on the number of GH receptors locally. This may be an 470 

indirect effect via the effects of two transmembrane proteins, LEPROT and LEPROTL1, 471 

which are increased during fasting, leading to reduction in GH binding and action at the 472 

growth plate (149). Recently it has been shown that fasting is associated with significant 473 
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increase in microRNA-140 specifically at the level of chondrocytes, although its precise 474 

mechanism on malnutrition growth failure is still unclear (150).  475 

 476 

4. Animal models of chronic disease and growth disorders 477 

Animal models of arthritis and colitis confirm the direct effects of chronic 478 

inflammation on growth, the GH/IGF axis systemically and at a local level. In addition, they 479 

have also provided evidence of the direct role of inflammation on delayed puberty and poor 480 

pubertal growth.  481 

The IL-6 transgenic mice have an adult size that is 50-70% smaller compared to non-482 

transgenic littermates, even after controlling for food intake (151). This was associated with 483 

normal systemic GH but low IGF-1 and low IGFBP-3. ALS levels on the other hand remained 484 

normal (151,152). The low IGF-1 was seen to be due to increased renal clearance whilst the 485 

low IGFBP-3 was due to increased proteolysis (152). Blocking IL-6 reversed the growth 486 

phenotype and normalized IGF-1 levels, pointing to the role of IL-6 on growth failure in 487 

chronic inflammation (153).  488 

In a study of rats with Mycobacterium butyricum induced arthritis, weight gain was 489 

three fold lower than controls. This was associated with low IGF-1 but increased IGFBP-3 490 

due to decrease in proteolysis (154-156). Pituitary GH and liver IGF-1 gene expression were 491 

reduced (157). In a study using a mouse model of systemic arthritis, C-natriuretic peptide 492 

overexpression in chondrocytes prevented endochondral growth retardation and reduced 493 

articular cartilage damage (158). This is thought to be mediated via an increase in 494 

chondrocyte proliferation, differentiation, hypertrophy, matrix production and local resistance 495 

to the effects of pro-inflammatory cytokines (158).  496 

Following trinitrobenzenesulphonic acid (TNBS) induced colitis, rats demonstrate 497 

growth retardation independent of under-nutrition, leading to only 30% of the growth rate of 498 

healthy rats (159,160), associated with normal systemic GH levels but low IGF-1 (159) . The 499 

IL-6 colitis rat also has 30% of the growth rate of controls, associated with low IGF1 levels 500 

(161).  501 
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Studies in TNBS colitis rats and dextran sodium sulphate (DSS) colitis demonstrated 502 

that inflammation causes delayed puberty inconsistent with changes in food intake, body 503 

weight, leptin and corticosterone levels (162-164). Plasma levels of 17β-estradiol in females 504 

and testosterone in male rats with colitis were significantly lower, although basal 505 

gonadotropin levels were similar (162). In females DSS mice with colitis, estradiol and 506 

gonadotropin levels were not lower (164). In males DSS mice with colitis, there was no 507 

difference in testosterone levels but stimulated LH, basal and stimulated FSH levels were 508 

lower in those male mice (163). In our opinion, these animal data suggest that cytokines may 509 

affect the secretion or sensitivity of gonadotropins, or act at the level of the gonadotropin 510 

releasing hormone which may differ depending on gender. Administration of inflammatory 511 

cytokines (165,166) via intracerebroventricular injection and peripheral injection of 512 

lipopolysaccharide (167) have been shown to decrease levels of LH and FSH. Although TNF-513 

α and IL1-β can inhibit steroidogenesis in leydig cells (168), the animal models of colitis do 514 

not support an effect of cytokines on the gonads causing primary gonadal failure as the 515 

etiology of delayed puberty. 516 

CF mice with a null mutation in the CFTR were significantly lighter and shorter 517 

compared with wild type mice associated with significantly lower systemic IGF-1 levels. 518 

Marginal reduction in GH levels were seen only in the female mice (169). CF mice have mild 519 

pancreatic pathology with little or no exocrine pancreatic dysfunction. They however exhibit 520 

growth failure suggesting that pancreatic exocrine status may not play a significant role in 521 

poor growth in this animal model (170). A study in pigs with CF demonstrated growth deficits 522 

at birth with associated lower IGF-1 levels which is due to the lack of CFTR impairing GH 523 

secretion (171).  524 

Adjuvant induced arthritis in rats treated with rhGH showed increased body weight 525 

(156,172) associated with increase levels of  systemic IGF-1 and IGFBP-3 (156,172), with 526 

reduction in IGFBP-1 and IGFBP-2 (156). Also, transgenic mice overexpressing GH with 527 

induced colitis had similar weight trajectory as controls. Compared with wild type mice with 528 

induced colitis, transgenic mice with induced colitis had higher systemic IGF-1 levels (173). 529 
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In contrast, rhGH treatment in interleukin 10-null mice with colitis improved weight gain but 530 

did not raise systemic IGF-1 levels (174). Whilst systemic IGF-1 levels were higher in rhGH 531 

treated rats with colitis, they were still lower than levels in control rats (175). In response to 532 

rhGH therapy, animal models of colitis have reduced hepatic activated tyrosine 533 

phosphorylated STAT5 (176,177). Currently, there are no studies evaluating the growth plate 534 

phenotype in animal models of chronic inflammation treated with rhGH. rhGH in rodent 535 

models may also activate the prolactin receptor. To the best of our knowledge, there are no 536 

animal studies of rhGH in chronic disease specifically targeting the GH receptor. 537 

 538 

 539 

 540 

5. Juvenile idiopathic arthritis (JIA) 541 

5.1 Disease and management 542 

Juvenile idiopathic arthritis comprises a heterogeneous group of disease subtypes 543 

involving inflammatory arthritis’s beginning before the age of 16 years with symptoms 544 

presenting for greater than 6 weeks (178). The pathogenesis is currently unknown although it 545 

is thought to be due to a combination of environmental triggers and specific immunogenic 546 

factors (179,180). There are currently seven subtypes of JIA according to the International 547 

League of Associations for Rheumatology (ILAR) classification (178,181,182). In currently 548 

published literature regarding growth and pubertal development, distinction is generally only 549 

made between those patients with oligoarticular, polyarticular and systemic JIA.  550 

Management of JIA differs depending on the subtype. There is currently no cure for 551 

JIA and treatment is focused on achieving optimal function of joints, preserving or ensuring 552 

normal mobility for day to day activity, ensuring normal growth development and minimizing 553 

negative impact on the child and family (183). Pain relief is achieved with the use of non-554 

steroidal anti-inflammatory drugs (NSAID). 555 

 In those with more severe joint involvement that do not respond to NSAID, intra-556 

articular GC injection is used as second line treatment. Response is usually seen within days 557 
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of injection and a response rate of 60-70% is maintained for several months (184-186). Early 558 

use of intra-articular GC injections, may result in fewer local long term consequences like 559 

contractures, muscle atrophy and leg length discrepancy (187,188). Reports of children 560 

treated with intra-articular GC and development of Cushingoid features exist in the published 561 

literature (189-191). The effect of intra-articular GC injections on linear growth in JIA is 562 

unclear. One study of 21 patients showed no adverse effects on linear growth (192). In a 563 

report of 2 patients with JIA (193), leg growth of the contralateral leg was reduced using 564 

knemometry after intra-articular GC injection. This could reflect local overgrowth of the 565 

affected inflamed limb which can occur in these children (194).  566 

For those with severe arthritis, oral GC may be needed. In some instances, 567 

intravenous GC (methylprednisolone) for a short period may also be required especially 568 

awaiting the therapeutic effects of background immunomodulator(eg methotrexate) (195). 569 

Other aspects of disease management in subtypes of JIA will be summarized in the next sub-570 

sections. 571 

 572 

5.1.1 Oligoarticular JIA 573 

This is the commonest subtype of JIA accounting for almost 50% of all children with 574 

JIA (196). These children have 4 joints or less affected. The arthritis is generally 575 

asymmetrical and predominantly involves the large joints of the lower extremities excluding 576 

the hips. The most commonly affected joints in decreasing order are the knees, ankles, elbows 577 

and the wrists (196,197). A subgroup of patients with oligoarticular JIA have extension of 578 

joint involvement such that there is > 4 inflamed joints after the first six months of disease, 579 

termed extended oligoarticular JIA. Approximately 50% of those who present with ≤ 4 580 

inflamed joints at diagnosis show subsequent extension of involved joints (198,199). It is 581 

unclear if this is a separate entity or if these patients in fact have polyarticular JIA.  582 

 583 

5.1.2  Polyarticular JIA 584 
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This group of children with JIA have 5 or more joints inflamed. All children with 585 

polyarticular JIA generally are likely to require a disease modifying anti-rheumatic drug 586 

(DMARD) such as methotrexate, sulphasalazine or leflunomide; anti-TNF therapy eg 587 

etanercept - or both classes of drugs. It is not uncommon, especially in those with severe 588 

disease, for a short bridging course of oral GC to be used. Current data suggests that 589 

methotrexate is the DMARD of choice in polyarticular JIA with approximately 86% 590 

responders at 2 years (200). Sixty three percent of children with polyarticular JIA will 591 

respond to treatment with methotrexate (201).  592 

In those with recalcitrant disease, anti- (tumor necrosis factor) TNF therapy offers the 593 

possibility of improving inflammation in these children. Etanercept (Enbrel) is the anti-TNF 594 

of choice in JIA. Etanercept is a soluble, dimeric fusion protein consisting of the human p75 595 

TNF receptor fused to the Fc region of the human IgG1. Approximately 74% of children with 596 

methotrexate resistant JIA will respond to treatment with etanercept (202,203). Adalimumab 597 

(Humira), a humanized monoclonal antibody against TNF-α, has also been shown to be 598 

effective in methotrexate resistant polyarticular JIA (204). Several studies have demonstrated 599 

the efficacy of etanercept in improving linear growth in children with JIA,mostly children 600 

with polyarticular JIA (22,205,206). Improvement in growth is greatest in those with lower Ht 601 

SDS at baseline and those not treated with GC. Growth response is modest, with a recent 602 

study from a large group of 191 children demonstrating that change in Ht SDS was only 0.29 603 

SD after two years of therapy (22).  604 

 605 

5.1.3  Systemic JIA 606 

The initial description of children with systemic JIA involves the observation of the 607 

classical triad of remittent fever, typical macular, salmon colored rash and arthritis. The 608 

arthritis could be oligoarticular initially but often progress to polyarthritis with resulting 609 

significant deformity leading to disability. The systemic signs of fever and rash can precede 610 

arthritis up to several months. Growth failure is frequently seen in children with systemic JIA, 611 

especially during acute flare (207). Predictors of poor prognosis in systemic JIA include age 612 
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of onset < 6 years, disease duration > 5 years or persistent systemic features at 6 months of 613 

disease including fever, need for GC and thrombocytosis (208). Whilst anti-TNF therapy is 614 

often used as first line biologic agent in systemic JIA, it is generally less effective compared 615 

to polyarticular JIA. 54% of patients with systemic JIA show poor response to etanercept 616 

(209)  617 

Evidence suggests that systemic JIA is in fact more driven by IL1-β and IL-6 618 

(210,211). Anakinra (Kineret) is a recombinant human (rh) IL-1 receptor antagonist shown to 619 

be effective in several preliminary open label and retrospective studies of children with GC 620 

dependent systemic JIA (211-213). Two recent randomized trials of Anakinra in children with 621 

systemic JIA have documented its efficacy in reduction of inflammation (214,215). Only 622 

about 45% of these children are IL-1 blocker responders and responders are those with lower 623 

number of active inflamed joints, higher absolute neutrophil count (212), suggesting that IL-1 624 

may not be the only driving cytokine in some children with systemic JIA.  625 

In systemic JIA, elevated levels of IL-6 have also been seen and appear to correlate 626 

with arthritis, fever and thrombocytosis (216). Tocilizumab (Actemra) is a humanized 627 

monoclonal antibody against the IL-6 receptor (217) and has been shown to be effective in 628 

early phase III trials of children with systemic JIA despite DMARD and anti TNF therapy 629 

(218). A recent study in a group of children with systemic JIA treated with Tocilizumab 630 

showed that growth rate improve significantly following 2 years of therapy with resultant 631 

normalization of IGF-1. These children however remained relatively short as Ht SDS only 632 

improved by +0.3 SD after 2 years. Ht SDS at baseline was approximately -2.0 SD (219). 633 

 634 

5.2 Clinical evidence of growth failure in JIA 635 

Localized growth impairment is not uncommon even in those with oligoarticular JIA 636 

and may result in significant leg length discrepancy as knees are commonly affected (194). 637 

The temporomandibular joint can also be affected in those with systemic and poly-articular 638 

JIA and may result in relative micrognathia, irregular growth of the jaw (220,221). Recent 3D 639 

facial asymmetry quantification confirms unilateral destruction of cartilage of the mandibular 640 
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condyle (222) in JIA. All these clinical observations point to the role of local bone growth 641 

impairment associated with chronic inflammation.  642 

In JIA, poor growth is more common in children with poly-articular (especially those 643 

with rheumatoid factor positive) and systemic JIA (207,223,224) although approximately 644 

12% of children with oligoarticular JIA have recently been shown to have > 1SD reduction in 645 

Ht SDS at adult height (AH) compared with Ht SDS at diagnosis (225). Evaluation of the 646 

clinically unaffected knee with MRI in a group of children with oligoarticular JIA revealed 647 

abnormalities in 40% (226). It is possible that clinical evaluation may not be sensitive enough 648 

to detect the more widespread joint involvement in some of these children classified as 649 

oligoarticular JIA (227).  Children with very early onset of systemic JIA (≤ 18 months) have a 650 

more severe disease phenotype and unsurprisingly poor growth is more frequent (228). 651 

Onset of puberty maybe delayed in JIA by about 0.4 to 2.2 years compared to healthy 652 

children (229,230). Progression through puberty can be compromised in JIA. None of the 653 

adolescents with JIA reached breast and genital stage 5 at 16 years despite the onset of 654 

puberty between 12-13 years in one study (230). A few studies have reported that onset of 655 

puberty may be earlier in children with systemic JIA in comparison with the other subtypes of 656 

JIA (229,231). These preliminary data need to be interpreted with care as the onset of puberty 657 

was defined by genitalia stage from patient self-assessment rather than clinical examination of 658 

testicular volume. Menarche in girls with JIA is delayed by one year compared to healthy 659 

girls and also to maternal age of menarche. Age of menarche was significantly later in those 660 

with systemic JIA in this study (232). Other studies found no difference for age at menarche 661 

for girls with JIA (233,234). 662 

Pubertal growth spurt in JIA may be attenuated and is often poorest in those with 663 

systemic JIA (231). In one study, actual HVs for children with oligoarticular and polyarticular 664 

JIA were approximately 1.5 cm/ year for those children aged 12-16 years whilst HV was only 665 

approximately 0.5 cm/ year for those with systemic JIA. A substantially compromised 666 

magnitude of peak height velocity (2.8 cm/year) was reported in this study. Peak height 667 

velocity was 3.6 cm/year for oligo-articular JIA, 4.9 cm/year for polyarticular JIA and 1.7 668 
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cm/year for systemic JIA (231).  HV for healthy children in puberty ranges from about 4-8 669 

cm/year on average.  670 

Current published studies report significant reduction in adult height (AH) in JIA 671 

(198,207,235-239) [Table 1]. However, these studies were published over a decade ago which 672 

would have included children treated in the 1980s. The use of immunomodulators and anti-673 

cytokine have only been incorporated into routine clinical practice in the last 10-15 years. 674 

Current studies of AH in JIA include different numbers of the various subtypes of JIA. The 675 

study by Simon et al from 2002 which reported a mean AH of -2.0 SD only included children 676 

with systemic JIA who were treated for approximately 7 years with continuous oral GC, a 677 

practice that is less common these days even in children with severe systemic JIA (207). AH 678 

of individuals with JIA treated with contemporary immunomodulators and anti-cytokine 679 

therapy is currently unknown. In addition, there is increasing use of intra-articular injection of 680 

GC instead of prolonged use of oral GC which may be beneficial for controlling joint 681 

inflammation but has less systemic side effects. It is possible that there may be growth 682 

suppressive effects of intra-articular GC especially for those children who require multiple 683 

repeated injections.  684 

Growth and pubertal development in other less common inflammatory rheumatologic 685 

conditions such as systemic lupus erythromatosus (SLE), dermatomyositis, and systemic 686 

sclerosis are not well studied. In a 2 year follow up study of 331 children with SLE, short 687 

stature was uncommon at baseline of study visit (median Ht SDS -0.4, median parent adjusted 688 

Ht SDS -0.3). However, Ht SDS continued to deteriorate despite institution of therapy, 689 

particularly pronounced in boys. Parents adjusted Ht SDS < -1.5 was seen in 25% and 15% of 690 

males and females at end of study, respectively (240). In SLE, delayed onset of puberty was 691 

seen in 15.3% of girls (breast stage 2) and 24% of boys (testes ≥ 4ml). Over twenty per cent 692 

of adolescent girls with SLE had delayed menarche (>15 years) or absent menarche. Irregular 693 

menses and secondary amenorrhea was seen in fewer than fifty per cent.  In the group of older 694 

adolescent girls, delay onset of puberty, pubertal tempo or menarche was seen in over one 695 
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third of girls whereas in older boys, delay onset of puberty and pubertal tempo was seen in 696 

almost fifty per cent (241).  697 

Some studies have reported an association between GC and growth failure in JIA  698 

(236,242) whilst others have not (227,237,243). One study evaluated the relationship between 699 

inflammatory cytokines and linear growth in 79 children JIA.  HV Z score was associated 700 

with erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and IL-6. IL-6 was the 701 

only significant factor (independent of other disease markers and GC dose) influencing 702 

growth rate on regression analysis in this study, highlighting once again the importance of 703 

disease itself on growth failure (244).  Although it is often difficult to separate the impact of 704 

GC and inflammation on growth impairment, judicious use of oral GC may have less impact 705 

on growth than uncontrolled inflammatory status. However, undoubtedly, prolonged high 706 

dose of systemic GC will have a negative effect on growth.  707 

To summarize this section, significant growth impairment leading to short stature is 708 

often seen in children with severe poly-articular JIA and systemic JIA. The recent report of 709 

long term growth problems in children with oligo-articular JIA needs to be confirmed in 710 

further studies. The extent of long term growth failure and short stature at AH in a cohort of 711 

individuals with JIA managed with modern therapies is currently unknown.  712 

 713 

5.3 Systemic abnormalities in GH/IGF-1 axis in JIA 714 

Chronic inflammation in JIA is associated with a state of relative GH resistance. A 715 

biochemical picture of GH resistance was seen in six slowly growing children with systemic 716 

JIA who had normal GH secretion from overnight GH sampling, normal GH response to two 717 

provocative tests (clonidine and ITT) but low IGF-1 and IGFBP-3  levels (245). Nine out of 718 

ten children with JIA underwent overnight GH sampling had normal GH secretion (246). 719 

Following 4 days treatment with rhGH (0.23 mg/kg/wk), IGF-1 and IGFBP-3 only increased 720 

by 31% and 14% respectively in JIA, whilst IGF-1 and IGFBP-3 rose by 85% and 73% in 8 721 

children with constitutional delay in puberty (247). The resistance to GH in JIA is due to a 722 

reduction in GH receptor gene expression. Following a 2 year follow up period, GH receptor 723 
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mRNA in lymphocytes of JIA increased, paralleled by improvement in disease activity, 724 

reduction in IL-6 levels and increase in IGF-1 levels (248)  725 

Impairment of GH secretion is also seen in children with JIA. Twenty three out of 63 726 

children with JIA who had been treated with GC for a mean of approximately 4 years at mean 727 

0.2 mg/kg/day Prednisolone at evaluation had evidence of GH deficiency by clonidine and/or 728 

arginine stimulation test (249). In a group of children with JIA not on oral GC, abnormal GH 729 

secretion was diagnosed in 50% based on results of overnight GH sampling and L-Dopa 730 

stimulation test, suggesting that inflammation itself may also impair GH secretion. The cut off 731 

for GH sufficiency was taken at the level equivalent to 10 mcg/L (250). The recommended 732 

peak GH of < 10 mcg/L has not been validated and this arbitrary cut off may need to be 733 

altered with the availability of newer monoclonal GH assays (251,252). These may vary 734 

depending on the provocative agent used. However, the clinical studies in JIA mirrors results 735 

experimental studies in animal models of chronic inflammation induced by 736 

lipopolysaccharide and endotoxin demonstrating that pituitary derived GH production can be 737 

reduced (154,253). The impact of intra-articular GC injections on GH secretion in children 738 

with JIA is unknown.  739 

Impairment of IGF binding proteins have also been reported in children with JIA. In 740 

26 children with systemic JIA, normal levels of ALS, low IGF-1 and markedly low IGFBP-3 741 

due to increase proteolysis of IGFBP-3 were reported (152).  In another study of 17 children 742 

with JIA (majority olio-articular JIA) and mild growth failure, normal IGF-1, marginally low 743 

IGFBP-3 but disproportionately low ALS was reported (254).  744 

Whilst low levels of IGF-1 are generally seen in most studies of childhood arthritis, 745 

some studies suggest that poorly growing children with inflammatory rheumatic conditions 746 

may have IGF-1 in the normal ranges, which suggest that a functional state of relative IGF-1 747 

resistance may exist (246,255,256). In 23 children with JIA, mean IGF-1 SDS adjusted for 748 

age was -0.84. Five of those individuals had relatively “high” IGF-1 SDS > +1 SD (216). It is 749 

possible GC treatment in the presence of inflammation reduces IGF-1 sensitivity.  A study of 750 

32 adults with rheumatoid arthritis (16 on Prednisolone) showed that IGF-1 was significantly 751 
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higher in the group on Prednisolone (mean 221 microgram/L vs. 122 microgram/L). Twelve 752 

weeks treatment with anti-TNF therapy (adalimumab) led to normalization of the raised IGF-753 

1 in the group on Prednisolone such that the levels were similar in both groups. (256).  754 

To summarize this section, studies of the systemic GH-IGF axis in children with JIA 755 

point to a state of GH resistance in the majority of the cases. Abnormalities in GH secretion 756 

may also exist in non-GC treated children, although this could be due to the impact of intra-757 

articular GC. Abnormalities of IGF binding proteins are reported in children with JIA but 758 

comprehensive studies of the ternary complex are still currently unavailable. IGF-1 resistance 759 

especially in those treated with high dose GC may also occur. Whilst GH/IGF-1 resistance 760 

occurs in JIA, there is insufficient scientific evidence to determine the contribution of 761 

systemic hormone resistance on growth impairment in children with JIA. 762 

 763 

5.4 Efficacy of rhGH on linear growth in JIA 764 

Earlier non-randomized studies that included children with JIA who were relatively 765 

older reported that HV can improve by over 100% with rhGH (247,257-264) [Table 2]. 766 

Subsequent randomized controlled trials including one with a placebo arm have confirmed 767 

these findings and suggest a modest effect on short to medium term catch-up growth [Table 3] 768 

(39,250,265-268) 769 

Two studies that compared different doses of rhGH suggested better growth response 770 

with the “higher” dose compared with the “lower dose” (0.16 mg/kg/wk vs. 0.33 mg/kg/wk 771 

and 0.15 mg/kg/wk vs. 0.30 mg/kg/wk) (247,260).  A recent trial in JIA has investigated even 772 

higher doses of rhGH (0.47mg/kg/week) (268). The growth response appears to be better in 773 

this study but the subjects in this trial had shorter duration of disease and GC exposure.  774 

The only randomized study with AH data in chronic inflammatory disease was 775 

conducted as an RCT using rhGH 0.33 mg/kg/wk for a mean duration of 8.4 years and it 776 

reported a mean difference of 14.3 cm at AH between the two groups. Treatment led to a net 777 

gain of Ht SDS of +2.3 SD as the control group lost 0.7 SD from baseline to AH. At AH, 778 

rhGH treated patients were still relatively short with mean AH of -1.6 SDS. However, 779 
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untreated children had a mean AH of -3.4 SDS (39) [Fig 8]. The efficacy of rhGH on AH in 780 

JIA is similar to gains seen in children with chronic renal insufficiency (CRI) treated with 781 

rhGH (269,270).  782 

In a non-randomized study using rhGH 0.33 mg/kg/week, using data from some of 783 

the children previously included in a randomized trial and patients clinically treated with 784 

rhGH off label, mean total pubertal height gain was 7.3 cm better with rhGH treatment.  785 

Similarly, mean AH in the rhGH group was – 1.7 SD whilst the AH of the matched controls 786 

was -3.2 SD (249). Total pubertal growth with rhGH in JIA is comparable to children with 787 

idiopathic GH deficiency treated with rhGH and healthy children during puberty 788 

(249,271,272). 789 

To evaluate the role of “early” use of rhGH before significant short stature is present, 790 

Simon et al conducted an RCT using rhGH 0.47 mg/kg/wk in a group of prepubertal children 791 

with JIA who were growing at less than 3cm/year and had a mean Ht SDS of about -1.0. 792 

These children had a relatively short duration of disease of approximately 2 years at baseline. 793 

After 3 years of rhGH, the relative Ht gain was +1.5 SD (268). These data suggest that early 794 

introduction of rhGH in the course of JIA before the onset of severe growth impairment may 795 

normalize growth rate. The benefit of “early” treatment with rhGH before the onset of severe 796 

growth failure needs further evaluation particularly in light of newer therapeutic development 797 

in JIA disease management, although we know that catch-up growth following anti-cytokine 798 

therapy may only be modest (22). 799 

There is now sufficient evidence to show that the use of relatively high dose rhGH 800 

leads to improvement of linear growth in children with JIA. Only one study with information 801 

on AH using rhGH dose similar to those used in conditions like TS and CRI report fairly 802 

similar AH outcome. Larger, adequately powered trials of rhGH in JIA are now needed to 803 

confirm long term AH outcome and address issues like optimal dose of rhGH and timing of 804 

starting rhGH. The impact of rhGH in those with systemic JIA, often the ones most severely 805 

affected, is still unclear, as current trials have included only a small number of such children. 806 

Future rhGH studies will also need to stratify for JIA subtypes at inclusion.  807 
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 808 

5.5 Factors affecting the growth response to rhGH in JIA 809 

5.5.1 Disease status and glucocorticoid 810 

Studies of rhGH in JIA have demonstrated that the growth response to rhGH is 811 

negatively associated with inflammatory markers such as CRP (39,260) and ESR (39). Some 812 

studies also found a negative association between cumulative prednisolone dose and growth 813 

rate during rhGH therapy (255,261,265,266). The association between prednisolone dose and 814 

growth rate was not statistically significant when the analysis was performed in a regression 815 

model, suggesting that inflammation plays a greater role in modulating growth response (39). 816 

One study showed that children with polyarticular JIA grew better on rhGH than those with 817 

systemic JIA although the number of children with systemic JIA was relatively small (263) 818 

 819 

5.5.2 Systemic IGF-1 levels 820 

A modest positive association has been reported between growth rate with IGF-1 and 821 

IGFBP-3 in response to rhGH. AH of the rhGH and control patients in the study by Bechtold 822 

et al showed a modest association with average IGF-1 and IGFBP-3 in JIA (r= 0.61 for IGF-1 823 

and IGFBP-3) over the treatment period (39).  824 

 825 

5.6 Efficacy of rhGH on disease process in JIA 826 

There are no published studies of rhGH on its effects on experimental arthritis, but 827 

there is currently no evidence to suggest any specific concerns about worsening of 828 

inflammatory arthritis. 829 

 830 

 831 

6. Inflammatory bowel disease (IBD) 832 

6.1 Disease and management 833 

Inflammatory bowel disease is a group of inflammatory disorders of the 834 

gastrointestinal tract characterized by chronic inflammation. IBD has a relapsing and 835 
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remitting nature, which is often unpredictable. IBD has classically been categorized into 836 

ulcerative colitis (UC) and Crohn’s disease (CD) on the basis of combinations of clinical 837 

presentation, radiological and endoscopic and histopathological features. Recent evidence 838 

suggests that the underlying etiology of IBD is due to the interaction of three factors: genetic 839 

susceptibility, environment abnormal immune host response and commensal gut microbiota 840 

(273). It is believed that the pathogenesis of IBD occurs from errors in the interpretation or 841 

regulation of immune perception and responsiveness to endogenous microbiota and thus 842 

disruption in mucosal homeostasis. This results in the initiation of immune responses in 843 

genetically predisposed individuals (274). Familial aggregation of IBD has long been 844 

recognized (275-278), but in the last twenty years detailed mapping of a region on 845 

chromosome 16 resulted in the identification of the NOD2/CARD15 gene. This gene encodes 846 

a cytoplasmic protein designated NOD2 or CARD15, which serves as a pattern recognition 847 

receptor for bacterial lipopolysaccharide and regulates activation of nuclear factor-kβ and 848 

secretion of a-defensins by ileal paneth cells (279-281). Numerous other candidate genes have 849 

subsequently been identified but only accounts for a small proportion of pediatric IBD (282-850 

284).  851 

Focusing specifically on growth and genetic influences in pediatric IBD, studies have 852 

shown that patients with an OCTN1/2 haplotype (285) and those with the IL6-174 GG 853 

genotype had lower height at diagnosis (161).  Another study revealed that patients with TNF-854 

α promoter polymorphism had higher Ht SDS at diagnosis (286). A much more recent study 855 

reported significant association between growth impairment in CD and a stature related 856 

polymorphism in the dymeclin gene (287). To date, it is unclear if these associations with 857 

genetic factors are independent of the severity of inflammation 858 

6.1.1 Ulcerative colitis 859 

UC is a condition where the inflammatory response and morphologic changes remain 860 

confined to the large intestine, with rectal involvement in about 95% of cases. In UC, 861 

inflammation is limited to the mucosa and consists of continuous involvement of variable 862 

severity, with ulceration, edema and hemorrhage along the length of the colon. Characteristic 863 
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histopathological findings are chronic mucosal inflammation with extensive polymorph 864 

nuclear leukocytes, mononuclear cells, crypt abscesses, and distortion of mucosal goblet 865 

glands and goblet cells. Induction of remission at diagnosis and subsequent acute relapse is 866 

with oral GC. Maintenance of remission in UC is with background therapies like amino 867 

salicylates (mild disease) or immunomodulators (eg azathioprine, methotrexate) and anti-868 

cytokine disease. In UC, major surgery with total colectomy and ileal pouch anal anastomosis 869 

is curative (288). The efficacy of anti-cytokine therapy in UC is unclear and as such not used 870 

as frequently (289).  871 

 872 

6.1.2 Crohn’s disease 873 

In contrast, CD is inflammation that can involve any part of the gastrointestinal tract 874 

from the oropharynx to the perianal area. Diseased and inflamed segments are separated by 875 

normal healthy bowel otherwise known as “skip lesions”. Inflammation can be transmural, 876 

often extending to the serosa, resulting in sinus tracts or fistula formation. Typical 877 

histopathological findings include small superficial ulcerations over a Peyer’s patch and focal 878 

chronic inflammation extending to the submucosa and sometimes accompanied by non 879 

caseating granuloma formation. Common sites involved are the ileocecal region, terminal 880 

ileum, small bowel and isolated colonic involvement.  881 

In CD, induction of remission of mild to moderate disease is often with exclusive 882 

enteral nutrition (EEN) (290). This is the provision of an exclusive liquid diet for a duration 883 

of 8-12 weeks which has been shown to be just as effective as GC for reduction of 884 

inflammation and but has no adverse effects on growth and bone metabolism (291). EEN is 885 

commonly used in Europe and is gaining popularity in the United States and the rest of the 886 

world. Background maintenance therapy using amino salicylates or immunomodulators with 887 

azathioprine are often used in moderate to severe disease close to the time of diagnosis. 888 

Methotrexate can be used as a second line immunomodulatory (292). 889 

 Escalation to anti-cytokine therapy like infliximab and adalimumab will be 890 

considered in those children with severe disease who are not responsive to GC and those with 891 
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chronic low grade inflammation but who are GC dependent. In the real world setting, the use 892 

of anti-TNF therapy in paediatric CD is associated with modest response with 56% achieving 893 

remission after 12 months (293). Safety issues like significant acute reactions and long term 894 

safety concerns including lethal forms of lymphoma preclude its use over extended periods of 895 

time (294,295). There is no doubt that the use of anti-TNF therapy in CD is associated with 896 

improvement in linear growth (296-298). Similar to the experience in children with JIA, this 897 

improvement is only modest with studies reporting increased in Ht SDS of between 0.2 to 0.3 898 

SD over 12 months of therapy (299).  899 

 900 

6.1.3 Inflammatory bowel disease unclassified 901 

CD involving the colon only is commoner is children than in adults which makes it 902 

challenging to distinguish CD and UC for some individuals. In these instances, the term IBD 903 

unspecified (IBDU) is used (previously known as indeterminate colitis). Observational studies 904 

suggest that children with IBDU could be considered a distinct subtype of IBD as the disease 905 

often takes an aggressive and progressive course (300)(REF).  906 

 907 

6.2 Growth failure in children with IBD 908 

In IBD, growth impairment appears to be more frequent and severe in children with 909 

CD than those with UC (18,301,302).(303,304) A UK IBD register that collected data for new 910 

cases presenting between 1997 and 2003, reported that, at diagnosis, mean Ht SDS was -0.3 911 

for both boys and girls with CD whereas it was -0.1 and +0.22 for boys and girls with UC, 912 

respectively (305). Ht SDS < -2.0 is present in approximately 10% of children with CD at 913 

diagnosis (18,306,307). In another recent study, mean Ht SDS for 102 children with CD 914 

(mean age 11.9 years) was -0.2, but those with Saccharomyces cerevisiae antibody (ASCA) 915 

had significantly lower height that those without (308). Whilst height reduction at diagnosis 916 

as a group appears to be mild, deteriorating height velocity is known to occur before the 917 

diagnosis of CD and can occur in the absence of gastrointestinal symptoms (309). A 918 

retrospective study of 116 children with CD provided further evidence for this as these 919 
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children were shorter than their genetic potential at diagnosis with mean Ht SDS of -0.5 920 

compared with mid-parental Ht SDS +0.2 (18).  921 

Several contemporary studies show that despite modern therapies, growth failure and 922 

short stature is still seen in a subset of children and adolescents with IBD (18,307,310). A 923 

study in a cohort of contemporary children and adolescents with IBD showed that Ht SDS 924 

showed a negative association with the body image domain of the pediatric IBD specific 925 

quality of life score IMPACT III, with higher scores indicating poorer quality of life (10) [Fig 926 

8]. Further research on the impact of abnormal growth and pubertal development and the 927 

impact on quality of life in children with IBD and other groups of chronic disease are needed. 928 

This is a challenging area to acquire meaningful information as there needs to be distinction 929 

between the impact of poor growth and the impact of the disease itself on quality of life.   930 

Delayed onset of puberty has been previously reported to be common in CD (6,311-931 

313), although careful evaluation of pubertal status by clinician examination is currently 932 

limited (10,311). Other current published studies have used age of menarche, bone age delay 933 

and age at initiation of growth spurt as assessment of pubertal delay (6,312-314). A report 934 

from the mid-90s showed that onset of breast development was delayed by 1.5 years in 935 

children with CD and UC. Boys in that study had 0.8 years delay in onset of testicular 936 

enlargement consistent with early puberty. This report is from a time when 937 

immunomodulators and certainly biologic therapy would not been used in clinical practice 938 

with heavy reliance on long term oral GC therapy.  939 

Although the treatment of children with IBD has changed considerably, a study from 940 

a contemporary cohort of children who analyzed retrospective pubertal growth data reported 941 

persisting evidence of delayed puberty as judged by the age at peak height velocity in those 942 

with CD. This delay was more likely in those with a higher ESR or lower BMI. Peak HV SDS 943 

adjusted for pubertal age was also reduced, suggesting that the pubertal growth spurt may be 944 

attenuated.  This study however, excluded children who were treated clinically with growth 945 

promoting therapy like sex steroid and / or rhGH, who by default are likely to be those with 946 

significant short stature or severe growth retardation (6). Therefore it is possible that there is 947 
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greater impact on puberty and pubertal growth spurt despite modern therapy. A recent 948 

prospective study of a cohort of children and adolescents with IBD suggests that pubertal 949 

delay was uncommon with only 0.3 years of bone age delay. Adolescent boys had attenuated 950 

growth rate during puberty whereas marginally delayed onset of puberty was seen in 951 

adolescent girls with IBD in this contemporary cohort (10). 952 

Two studies demonstrated bone age delay of approximately one year in children with 953 

CD (312,313,315), which is within acceptable limits, including one study from patients 954 

managed between 2007-2009 with 60% of patients on immunomodulators and 20% on 955 

infliximab (315) In girls, age at menarche occurred after 16 years in 73% with CD in a cohort 956 

managed between 1968 and 1983 (314).  In a cohort managed between 2007-2009, girls with 957 

CD reached menarche at median age of 13.9 years (313)compared with healthy controls of 12 958 

years.  959 

Several contemporary studies of growth in children with IBD show lack of adequate 960 

catch up growth despite advances in primary disease therapy. In a study of 176 children with 961 

CD, Ht SDS at diagnosis, 1 and 2 years remain unchanged at approximately -0.5 SD. The 962 

percentage of children with Ht SDS < -2.0 however was slightly less frequent by 2 years: 10% 963 

at diagnosis, 8% 1 year, 6.5% 2 year. This cohort was largely managed with oral GC 964 

(Prednisolone) for induction of remission as only 4% had primary enteral nutrition therapy 965 

within 3 months of diagnosis. (306). Another study of 116 children with CD where enteral 966 

nutrition was more commonly used for induction of remission (63% of cases from diagnosis), 967 

Ht SDS (approximately -0.5 SD) remained the same from diagnosis to a mean final follow-up 968 

of 4.6 years after diagnosis (18).  969 

In contrast to JIA, only a modest reduction in AH has been reported by most studies 970 

in adults with childhood-onset IBD (3,8,9,303,314,316-319) [Table 4]. AH is significantly 971 

lower in childhood onset CD with onset before puberty, although definition of puberty in this 972 

study was unclear (320). In a relatively contemporary cohort of 123 patients with CD,  AH 973 

was only 2.4 cm lower than target height. However almost twenty per cent achieved a AH that 974 

was more than 8cm below their mid-parental height suggesting that a small sub-group of 975 
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adults with childhood onset CD may have significant long term growth impairment leading to 976 

short stature. Longer duration of symptoms prior to diagnosis and jejunal disease were related 977 

to AH in that study but these factors require further study (9). Conventional assessments with 978 

endoscopy and barium studies often do not identify jejunal disease adequately, questioning 979 

the relationship with AH in that study. Parents’ heights were also obtained from patient 980 

estimation. In another study of AH in IBD where 108 patients had AH and parental height 981 

measurements performed by researchers, 28 out of 108 (26%) who had more than one Ht SDS 982 

< -1.6 during growth (defined as growth impaired group) had AH of 0.9 SD lower than mid-983 

parental Ht SDS. In those with no evidence of growth impairment, defined as those who did 984 

not have Ht SDS < -1.6 more than once during growth, AH was only 0.1 SD lower than mid-985 

parental Ht SDS. (319).  986 

Published evidence suggests that short term linear growth may be better in those 987 

children managed with enteral nutrition during acute relapse compared with oral GC 988 

(321,322), although the effects of EEN practice on long term growth outcome is less 989 

convincing. AH in CD (-0.4 SD) did not differ between an American study (319) and a United 990 

Kingdom study (-0.3 SD) (9) where the agent of induction of remission differed: oral GC in 991 

the American study and EEN in the United Kingdom study. Similarly, in a group of children 992 

with CD managed with EEN at initial diagnosis and who were encouraged to continue to take 993 

supplemental enteral nutrition, weight and BMI SDS increased up to 2 years follow-up, 994 

whereas Ht SDS remained unchanged (323).  995 

Numerous studies of anti-cytokine therapy using infliximab and adalimumab in CD 996 

show significant improvement in growth rate (296-298), although some did not demonstrate 997 

any improvement in linear growth (324,325). The improvement in growth in these children 998 

may be independent of progression in puberty, reduction in GC, and maybe better in those 999 

who are concurrently treated with methotrexate. However approximately 30% of these 1000 

children may still have poor growth following biologic therapy (296).  1001 

Clinical studies in children with IBD have largely shown no relationship between GC 1002 

and linear growth (304,326). Saha et al, reported no difference in Ht and HV SDS in 1003 
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prepubertal children with CD and UC treated with GC versus those who did not receive GC. 1004 

(243). A more recent study of a cohort of 102 children with CD treated with long term low 1005 

dose oral GC in the form of Prednisolone (mean dose of 0.2 mg/kg/day for mean 14.4 1006 

months) showed that almost twenty per cent of the cohort showed growth failure, although 1007 

HV was not adjusted for delayed puberty. Of those with growth failure, only one third showed 1008 

catch up growth after discontinuation of GC (327).   1009 

Several studies have evaluated the association between cytokines with linear growth 1010 

and markers of the GH-IGF axis in children with IBD. In 37 children with IBD (17 CD), IGF-1011 

1 levels were lower whilst IGFBP-2 was higher compared with controls during relapse. IL1-β 1012 

levels were related to negatively with IGF-1 and positively with IGFBP-2 (328). Levels of 1013 

lipopolysaccharide was significantly higher in children with CD lower height at diagnosis and 1014 

follow-up (329).Several studies of genetic polymorphism in genes regulating cytokine 1015 

production have shown a relationship with growth impairment in pediatric IBD. Children with 1016 

CD with the -174 GG promoter polymorphism which affects IL-6 transcription had 1017 

significantly lower Ht SDS at diagnosis (161). The presence of 238G/A and 863C/A 1018 

polymorphism on the TNF-α promoter gene has been shown to be associated with better 1019 

height and linear growth in children with CD and appears to be independent of disease 1020 

activity (286). 1021 

Current studies suggest that a sub-group of children with IBD especially those with 1022 

CD have significant growth failure leading to short stature at AH. Despite the introduction of 1023 

modern GC sparing therapies including anti-cytokine therapies, poor growth is still 1024 

encountered, although significantly delay in onset of puberty is perhaps less common. The 1025 

authors believe that the persistence of poor growth in a small group of these children reflect 1026 

the fact that some children with CD still do not achieve disease remission with current 1027 

therapies or adverse effects preclude the use of aggressive modern therapies. Given the short 1028 

window for growth in CD, as the age of presentation is often in the adolescent years, adjuvant 1029 

growth promoting therapies may still need to be explored in this small subset. Finally, the 1030 
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growth outcome of children with IBDU who may have a more severe disease course is still 1031 

currently unclear.  1032 

 1033 

6.3 Systemic abnormalities in the GH/IGF-1 axis in children with IBD 1034 

Similar to children with JIA, growth failure in IBD is associated with a state of GH 1035 

resistance. Early evaluation of the GH axis in 10 children with IBD showed excessive rather 1036 

than impaired response, using overnight GH profile, propranolol-glucagon and ITT, 1037 

supporting the notion that these children may be GH resistant (330). IGF-1 levels have been 1038 

shown to be low in these children, although again delayed maturation may contribute to these 1039 

result (331).  Similarly, in 14 children with CD and growth failure who were not on oral GC, 1040 

normal GH response to ITT was seen in most of the children. Four out of 14 (29%) of these 1041 

children  had peak GH levels < 6 mcg/L suggesting abnormalities in GH secretion (332). In a 1042 

study of 5 children with CD with poor growth and delayed puberty (median age 15 years, 1043 

median bone age 11 years and all except one patient was in Tanner I and II), three out of the 5 1044 

had inadequate five hour mean GH levels and peak GH during sleep-further evidence that 1045 

subtle abnormalities in GH secretion may exist. However, only one child had low GH peak to 1046 

ITT and none of these 5 children were on oral GC (333).  1047 

Abnormalities in the GH axis may be present at diagnosis of children with IBD (330). 1048 

In addition, abnormalities in the GH-IGF axis in children with chronic inflammation are not 1049 

permanent as they have been shown to be responsive to primary disease therapeutic 1050 

intervention using Prednisolone (334), enteral nutrition (335,336), infliximab (337) and 1051 

surgical resection (336).  1052 

It is now recognized that a range of abnormalities in GH and IGF-1 secretion and 1053 

sensitivity exists in children with IBD and growth failure (338) [Fig 9]. In 28 children with 1054 

IBD (25 CD) evaluated with an ITT, 11 (39%) had peak GH > 6 mcg/L and IGF-1 SDS < 0 1055 

(biochemical functional GH resistance). Biochemical functional GH deficiency defined as 1056 

peak GH < 3 mcg/L and IGF-1 SDS < 0 was seen in 4 (14%). Biochemical functional GH 1057 

insufficiency defined as peak GH < 6 mcg/L but ≥ 3 mcg/L and IGF-1 SDS < 0 was seen in 1058 
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11 (39%). Two children had normal GH levels and IGF-1 SDS ≥ 0 suggestive of biochemical 1059 

functional IGF-1 resistance. 1060 

Comprehensive studies of the IGF binding protein and ternary complex in children 1061 

with IBD are currently not available. In a contemporary group of children and adolescents 1062 

with IBD, pubertal onset was not delayed but abnormal pubertal growth was observed. This 1063 

was associated with reduction in IGF-1 levels but marginally elevated IGFBP-3, which was 1064 

postulated to lead to reduction in bioavailability of free IGF-1 (10). A recent study reported 1065 

gender differences in IGF-1 and IGFBP-3 levels in children with CD such that boys had 1066 

significantly lower levels even after adjusting for bone age delay, although Ht SDS was 1067 

similar in both groups (315). A previous study suggested that females with CD had a more 1068 

severe disease course, although males were more likely to exhibit growth failure (339).  One 1069 

study previously reported that IGFBP-2 is significantly higher in children with CD at relapse 1070 

and that this was associated with IL-6 (328). The role of IGFBP-2 and regulation of linear 1071 

growth is unclear but it is thought that it may lead to reduction of the formation of ternary 1072 

complex and may have a direct inhibitory role at the level of the growth plate (340,341). 1073 

In summary, growth failure in children with IBD is associated with a range in defects 1074 

in secretion and sensitivity of the GH-IGF1 axis. The relative contribution of inflammation, 1075 

use of GC and nutrition on these systemic abnormalities is difficult to tease out from current 1076 

studies. Indeed, the contribution of these systemic abnormalities on the growth phenotype of 1077 

these children is unclear. Studies with comprehensive evaluation of IGF binding proteins are 1078 

limited in children with IBD. IGFBP-2 may be a marker of disease in children with IBD but 1079 

whether IGFBP-2 plays an inhibitory role on linear growth in childhood IBD is still unknown.  1080 

 1081 

6.4 Efficacy of rhGH on linear growth in IBD 1082 

Compared to studies in JIA, there is a paucity of data of rhGH in children with IBD 1083 

[Table 5 (342-348) and Table 6 (349-351)]. A non-randomized study of rhGH (0.35 1084 

mg/kg/wk) in 10 children  (Mean age 11.9 yrs, Ht SDS of -1.8) reported an 85% increase in 1085 

HV at 6 months rising from 4.0 cm/yr. to 7.4 cm/yr. This improvement was maintained in a 1086 
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subgroup of seven children who continued treatment for a further 6 months (344).  The only 1087 

RCT of rhGH at 0.45 mg/kg/wk, for improving linear growth in children with IBD, conducted 1088 

by Wong et al reported that HV increased by a median of 140% in the rhGH group compared 1089 

with an 8% reduction in the control group at six months [Fig 10]. Therapy over the six months 1090 

period was associated with a median difference of 3.3 cm of height gain between the rhGH 1091 

and control group; equivalent to a median relative gain in height SDS of +0.4SD (351). rhGH 1092 

therapy in this trial was associated with significantly higher levels of total IGF1, but no 1093 

significant changes in IGFBP-3, ALS, free IGF-1 and IGFBP-2 (352).Another RCT of rhGH 1094 

(0.53 mg/kg/wk) in children with CD designed to evaluate the role of rhGH in improving 1095 

disease process, showed that HV improved by 60% in the rhGH group at 12 weeks. Eighteen 1096 

of the 20 children who showed disease clinical remission at 12 weeks continued rhGH for a 1097 

total of 52 weeks. Ht SDS of this group improved from -1.1 to -0.4 (350).  1098 

Given the results of the preliminary studies of rhGH in children with IBD, there now 1099 

needs to be larger definitive trials of rhGH in slowly growing children. Challenges include 1100 

interpretation of growth rate during puberty and evaluation of disease activity. It is possible 1101 

that the growth response to rhGH may be more favorable in those with shorter duration of 1102 

disease and where nutrition is optimized. In that regard, future clinical trials of rhGH in IBD 1103 

should target those with shorter duration of disease since diagnosis and explore the benefit of 1104 

concurrent supplemental feeding.  1105 

 1106 

6.5 Factors affecting the growth response to rhGH in IBD 1107 

6.5.1 Disease and glucocorticoid 1108 

In IBD, HV was inversely related to pediatric crohn’s disease activity index (PCDAI) 1109 

and ESR. However, in individuals on rhGH but not the control group, HV showed a positive 1110 

association with hemoglobin, negative associations with ESR and PCDAI. Cumulative 1111 

prednisolone dose was not associated with growth response but the dose of prednisolone used 1112 

in that cohort was negligible (351).  1113 

 1114 
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6.5.2 Systemic IGF-1 1115 

In children with IBD treated with rhGH, IGF-1 showed a modest but weak 1116 

statistically significant association with growth rate during the period of treatment (351).  1117 

 1118 

6.6 Efficacy of rhGH in on disease process in IBD 1119 

Several animal models of colitis suggest a direct effect of rhGH on chronic 1120 

inflammation via a reduction of both mucosal apoptosis and IL-6 dependent signal transducer 1121 

and activator of transcription3 (STAT3) activation (173,174,353). rhGH can also directly alter 1122 

systemic markers of inflammation. rhGH in children with growth hormone deficiency (GHD) 1123 

may lead to reduction in systemic pro-inflammatory cytokines although the data of rhGH in 1124 

children with non-GHD states are conflicting (354-358). In a study by Slonim et al with the 1125 

primary aim of assessing the effects of rhGH treatment on reduction of inflammation, 32 1126 

adults with CD were randomized to rhGH (17 rhGH) or placebo injections for four months. 1127 

rhGH treatment was administered at 5mg daily for one week followed by 1.5 mg daily 1128 

thereafter. Reduction in Crohn’s disease activity index (CDAI) was significantly greater at 4 1129 

months with rhGH: -143 points in the rhGH group and -19 in the placebo group. There was 1130 

however no significant change in Hb, hematocrit (HCT), ESR, prealbumin, ferritin or iron 1131 

levels after 4 months (347).  1132 

To explore the role of rhGH on disease activity in pediatric CD, Denson et al 1133 

conducted an RCT in 20 children (19 rhGH) with CD (10 rhGH-0.53 mg/kg/wk). The 1134 

authors’ concluded that rhGH may be an adjunct for treatment of inflammatory disease based 1135 

on improvement in PCDAI (350). In the rhGH group, PCDAI was 32 and 8 points at baseline 1136 

and 12 weeks. In the control group, PCDAI was 33 and 22 at baseline and 12 weeks. The 1137 

percentage of GC usage in the rhGH group was lower at 12 weeks, although the dose of 1138 

prednisolone was similar in both groups. Other markers of disease activity including 1139 

endoscopic severity, fecal calprotectin and ESR were also similar. 1140 

Whilst generally accepted and validated as a disease index, there is a potential pitfall 1141 

in the use of PCDAI (359) in rhGH studies. PCDAI is made up of three domains:  1142 
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(1) Subjective patient recall of symptoms  1143 

(2) Laboratory parameters and clinical examination  1144 

(3) Auxology: weight and HV SDS. HV SDS accounts for 10 points if HV SDS < -1145 

2.0 SD, 5 points if < -1.0 SD but > -2.0 SD and 0 points if HV SDS > -1.0.  1146 

In the study by Denson et al, HV SDS was -1.0 and -1.8 at baseline in the rhGH and control 1147 

group. At 12 weeks, HV SDS was +2.0 and -2.1 in the rhGH and control group (350). We 1148 

believe that the lower PCDAI in the rhGH group in that study merely reflects improvement in 1149 

linear growth independent of reduction of inflammation. The possibility that rhGH may 1150 

improve inflammation directly in pediatric CD remains an open question but need to be 1151 

explored in future studies using other disease end points other than the PCDAI. 1152 

In the study by Wong et al. PCDAI was lower after 6 months therapy with rhGH 1153 

which could be interpreted as improvement in disease activity. However, when data was 1154 

analyzed using the abbreviated PCDAI which omits the laboratory, physical examination and 1155 

auxology domains, there was no difference in disease activity over the 6 months in both 1156 

groups. ESR, CRP, Hb, HCT, albumin, TNF, IL-1 and IL-6 were similar in both groups and 1157 

after the 6 months period (351). Extensive evaluation of 28 cytokines, chemokines and 1158 

inflammatory growth factor using the Multiplex assay in that clinical trial showed no 1159 

differences over the six months period in rhGH or control group and they also did not differ 1160 

between the two groups (352). Careful disease evaluation including the use of fecal 1161 

calprotectin, endoscopy or new imaging techniques like MRI should be considered in future 1162 

rhGH trials in IBD. 1163 

 1164 

7. Cystic fibrosis (CF) 1165 

7.1 Summary of disease and management 1166 

Cystic fibrosis (CF) is an autosomal recessive genetic condition, primarily affecting 1167 

the lungs but also the pancreas, liver, intestine and other organs. The defect is on the CF 1168 

transmembrane conductance regulator (CFTR) gene (7q31.2) on the long arm of chromosome 1169 

7 which leads to absence of normal CFTR protein which is a c-AMP activated ion channel. 1170 
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As a result of this, decreased chloride secretion and increased sodium absorption across 1171 

epithelial surface is seen. In the airways, this causes depletion of the airway surface liquid and 1172 

impaired mucociliary clearance which leads to pulmonary infection and inflammation of the 1173 

airways. This starts early in life and progresses to chronic infection and pulmonary 1174 

inflammation. Proteases, inflammatory cells and cytokines like IL-8, IL-6, TNF-α in 1175 

CF(360,361)may lead to ongoing airway wall inflammation, remodeling and eventually 1176 

bronchiectasis. Inflammatory mediators like neutrophil elastase and bacterial 1177 

lipopolysaccharide in turn mediate the inflammatory effects by activating the transcription 1178 

factor nuclear factor-κβ which regulates pathways that induce production of cytokines. 1179 

Pathogens such as Pseudomonas aeruginosa, Burkolderia cepacia, Staphylococcus aureus and 1180 

Haemophilus influenza eventually colonize the airway secretions of CF individuals.  1181 

Recent studies show that TNF gene polymorphism is associated with disease 1182 

progression and severity of pulmonary function (362,363), whilst another study found an 1183 

association with gene polymorphism in IL1-β, IL-8 and IL-10 to be associated with more 1184 

severe lung disease in CF (364). Cytokines in CF may also impact on the GH-IGF axis as 1185 

demonstrated in studies relating inflammatory cytokines to systemic markers of the GH axis. 1186 

In a group of young adults with CF, IL-6 was positively associated with IGFBP-2 (365). 1187 

Similarly, in a group of prepubertal children with CF, change in IL-6 was positively 1188 

associated with change in IGFBP-2 (366). 1189 

In CF, gastrointestinal symptoms and signs including failure to pass meconium in a 1190 

new born infant is seen. In severe instances this could be associated with meconium ileus in a 1191 

small proportion of infants. Exocrine pancreatic insufficiency occurs in the majority of 1192 

individuals and requires pancreatic enzyme supplementation. In CF with pancreatic 1193 

insufficiency, mucosal inflammation is often seen with raised fecal calprotectin. Fecal 1194 

calprotectin in CF is also associated with height SDS (367). Endocrine defects involving 1195 

damage to islet cells of the pancreas may lead to CF related diabetes. CF related diabetes with 1196 

features of both type 1 and type 2 diabetes mellitus is increasingly recognized especially in 1197 
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late adolescents. This is often parallels deterioration in lung function, growth and abnormal 1198 

bone development. 1199 

Current management of CF requires early treatment and prevention of pulmonary 1200 

infections with antibiotics, physiotherapy and nutritional support. Allergic bronchopulmonary 1201 

aspergillosis is an exaggerated immune response to Aspergillus fumagitus which is seen in 1202 

about 4-11% of individuals with CF, which will lead to worsening of lung function(368,369). 1203 

Oral GC is often used for prolonged periods as inhaled GC is not effective in this 1204 

condition(370). 1205 

Structured CF multidisciplinary services and easy access to health carers cognizant to 1206 

the issues in CF have improved clinical outcome in CF over the last few decades (371). With 1207 

increasing survival of people with CF, issues relating to growth and pubertal development 1208 

have become a greater concern.   1209 

 1210 

7.2 Growth failure in children with CF 1211 

Growth failure and short stature in CF may not have been given as much attention but 1212 

with the increasing age of survivial of these individuals, they may become more important 1213 

issues to consider. Severe short stature in CF may not be a common occurrence. In a recent 1214 

study of 169 children with CF in the Netherlands, prevalence of short stature was 8%. 1215 

However, when target height was taken into account, this was only 5%. When both delayed 1216 

maturation and target height were taken into account (height for bone age adjusted for target 1217 

height), this was only 1% (372). Similar to children with JIA and IBD, severe short stature in 1218 

contemporary groups of children with CF is uncommon although poor growth is still seen 1219 

(372).  1220 

Improved clinical care through multidisciplinary teams and the introduction of 1221 

neonatal screening for CF has been shown to be associated with improvement in growth. 1222 

Studies have shown that ongoing clinical care in specialist centers all throughout the life cycle 1223 

leads to improvement in growth parameters, although it is unclear which aspects of clinical 1224 

care is associated with improvement in growth. Interestingly, improvement in growth in those 1225 
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managed in specialist centers was not associated with in improvement in pulmonary function 1226 

(373,374). Most current published studies report some association between height and 1227 

pulmonary/pancreatic function (375-377) although other studies show no association of 1228 

growth with colonization with Pseudomonas aeruginosa (378) and respiratory function as 1229 

assessed by FEV1 (379), highlighting the multifactorial nature of poor growth in CF.  1230 

Addressing nutrition in CF is paramount and may improve linear growth in CF but 1231 

this needs to be assessed on an individual basis. Long term supplemental enteral feeding in 1232 

children with CF using gastrostomy feeding show improvement in height although height 1233 

often improves at least after 18 months of gastrostomy feeding (380-383). In a contemporary 1234 

group of children with CF, the prevalence of malnutrition was only 7%, whereas 15% were 1235 

overweight and 8% were obese (384) and therefore overzealous nutritional management 1236 

should be avoided 1237 

Evidence suggest that children with CF identified from screening exhibit better linear 1238 

growth compared with those diagnosed due to clinical symptoms (385). In a study of 89 CF 1239 

children identified from neonatal screening, one third of that cohort had height below the 3rd 1240 

centile and half of that cohort had height below the 10th centile (386) whereas in an older 1241 

study of children diagnosed from clinical symptoms, 40% had height below the 5th centile at 1242 

diagnosis (387). 1243 

With the introduction of neonatal screening, it is now recognized that infants with CF 1244 

are lighter, shorter and have smaller head circumference at birth (388-391), associated with 1245 

reduction in systemic IGF-1 levels from analysis of blood spot screening (171). CF genotype 1246 

itself may have an impact on growth and this is still poorly documented in current growth 1247 

studies in children and adolescents with CD. Children homozygous for ∆F508 mutation had 1248 

Ht SDS approximately 1 SD below the mean from infancy to early adolescence (392). Thus, 1249 

the condition itself via mechanism still unknown can predispose to growth failure and this 1250 

deserves further research. 1251 

Poor growth often precede the onset of CF related diabetes (23), and can impact on 1252 

pubertal growth and adult height (393).  Poor growth associated with CF related diabetes may 1253 
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not be normalized with insulin treatment even when started early (393), although currently 1254 

studies of insulin treatment in CF diabetes with linear growth outcomes are limited. CF 1255 

diabetes is often diagnosed in mid to late adolescents, although with increased awareness and 1256 

screening, diagnosis in childhood is not uncommon.  1257 

Short stature in CF may have an impact on disease severity as short stature in CF is 1258 

an independent predictor of mortality, which may reflect a sub- group with poorer nutrition or 1259 

low grade chronic inflammation and ongoing pulmonary exacerbations (394). A poorly 1260 

growing child with CF and short stature may also have lower lung reserve. The possible 1261 

benefit of rhGH therapy on pulmonary function in CF will be discussed in a later section. 1262 

Similar to children with IBD and JIA, pubertal abnormalities are also seen in children 1263 

with CF. Delay in skeletal maturation, onset of puberty, attenuated pubertal growth spurt has 1264 

been reported in adolescents with CF. Bone age was reported to be delayed by more than 24 1265 

months in 25% of adolescents and compared to healthy children, age of peak height velocity 1266 

as a marker of onset of puberty was delayed by 9-10 months in boys and 10-14 months in 1267 

girls. Girls with CF reach menarche 2 years later than their healthy peers (395). Older studies 1268 

show that delayed puberty is present especially in girls with CF despite good clinical status, 1269 

with an association of delayed pubertal onset especially in those with the ∆F508 mutation 1270 

(396). However, a recent retrospective study including  729 contemporary children with CF, 1271 

showed that delayed onset of puberty was not a common occurrence (379) 1272 

Adolescents with CF may have lower peak HV compared with healthy adolescents 1273 

with constitutional delay in growth and puberty (397). Those individuals with CF with 1274 

delayed puberty appear to also have poorer HV during pubertal progression (4,379). One 1275 

study reporting body proportions in a group of younger adolescents with CF showed that their 1276 

legs were shorter than trunks, although pubertal assessment was not reported (5). Delayed 1277 

puberty and short stature in CF correlated with less participation in social activities, which 1278 

may be related to the degree of pulmonary function and disease state. Delayed puberty in CF 1279 

was associated with poorer degree of ideal formation and less positive body attitude (398). 1280 
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Table 7 summarizes studies with information on AH in CF (4,379,388,399-403). 1281 

Interpretation of AH prognosis in CF from published studies is difficult given the fact that it is 1282 

possible that mortality in some of the more severely affected individuals in adolescence may 1283 

lead to more favorable AH of those studies with measurements conducted in adulthood. On 1284 

the other hand, survival and treatment have also improved over the last few decades.  1285 

The existing literature of growth in CF suggests that nutritional issues and pulmonary 1286 

exacerbations are not sufficient to explain the growth abnormalities in these children. There is 1287 

now sufficient evidence to suggest that poor growth in CF is already seen in the neonatal 1288 

period and that CF genotype (∆F508) plays a contributing role. Whether this is due to 1289 

underlying chronic inflammation or other unknown factors is yet to be determined. In 1290 

adolescence, further worsening of growth and pubertal disorders may herald the onset of CF 1291 

related diabetes and this requires early diagnosis and treatment, even though growth may not 1292 

fully normalize with insulin therapy. The complex interplay between CF genotype, 1293 

inflammation, nutritional and endocrine perturbations on growth requires further 1294 

investigation. The impact of CF neonatal screening on improvement in long term growth 1295 

outcome needs clarification.  1296 

 1297 

7.3 Systemic abnormalities in GH/IGF-1 axis in children with CF 1298 

In CF, it is generally accepted that GH resistance also exists although studies of GH 1299 

secretion is limited. Using arginine and clonidine as pharmacological stimulant of the GH axis 1300 

in a small group of adolescents with CF, approximately 50% had peak GH levels < 6 mcg/|L 1301 

and IGF-1 SDS -0.5, suggesting that relative GH resistance and GH insufficiency can occur. 1302 

It was unclear if sex steroid priming was used in this group of children with delayed puberty 1303 

as bone age was delayed at least by 2.5 years (404). 1304 

Low IGF-1 and IGFBP-3 have been previously reported in studies in children with 1305 

CF and show associations with pulmonary outcomes. In a study of a group of prepubertal and 1306 

pubertal children, IGF-1 SDS was -1.2 SD and IGFBP-3 SD was -0.7 during acute pulmonary 1307 

exacerbation, although another study reported low IGF-1 with normal IGFBP-3 (365). IGF-1 1308 
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correlated with forced expiratory volume 1 (FEV1) and forced vital capacity (FVC); whereas 1309 

IGFBP-3 correlated with FVC. (405).  In a group of prepubertal children with CF, systemic 1310 

IGF-1 and bioavailability of IGF-1 correlated with serum TNF-α, providing further evidence 1311 

to the role of inflammation on the GH-IGF axis in these children. Systemic IGF-1 showed an 1312 

association with height in children with CF although the relationship is modest at best 1313 

(366,406-408). In addition, systemic IGF-1 in CF may also be associated with weight, protein 1314 

catabolism (408), lean body mass (409) and pulmonary function (405,410). 1315 

Other studies report abnormalities in IGF binding proteins with normal systemic IGF-1316 

1 in CF in particular significantly lower IGFBP-3  and higher IGFBP-1 (406). Reduction in 1317 

bioavailability of IGF-1 due to abnormalities in IGF binding proteins could account for the 1318 

growth failure in CF (366,411) or alternatively “normal” IGF-1 in the face of growth failure 1319 

in CF could also point to IGF-1 resistance. The direct role of IGFP-1 on growth is unclear, 1320 

although it shows an association with insulin secretion in CF, suggesting that IGFBP-1 may 1321 

have a role in growth impairment via its effects on glucose homeostasis in CF (237). Changes 1322 

in IGF-1 and bioavailability of IGF-1 also correlated with progressive insulin deficiency 1323 

(412,413). Finally, IGFBP-2 has also been reported to be higher in CF compared to healthy 1324 

controls. Change in IGFBP-2 was associated with changes in IL-6 over a 12 months period 1325 

(366).  1326 

 In summary, systemic evaluation of the GH-IGF axis in CF have produced mixed 1327 

results. Low IGF-1 may be present in infants with CF within the first few weeks of life. The 1328 

interlink of IGFBP-1 with insulin secretion and IGFBP-2 with inflammation may provide 1329 

further insight into growth failure in CF, but comprehensive studies of the IGF axis and the 1330 

contribution to linear growth are needed. 1331 

 1332 

7.4 Efficacy of rhGH in CF 1333 

Clinical trials of the use of rhGH in CF have recently been evaluated in two 1334 

systematic reviews including meta-analysis of published studies (414,415). Both reviews have 1335 

included studies where height or growth rate were not reported as some of the published 1336 
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studies have been powered to assess the effects of rhGH on metabolic consequences, body 1337 

composition and disease parameters.  1338 

For this review, we have focused on studies of rhGH in CF with growth outcomes: 1339 

Table 8 (416-421) and Table 9 (422-427). To date, there are 6 RCT of rhGH therapy on linear 1340 

growth in children with CF. The longest duration of rhGH clinical trials in CF currently in the 1341 

literature is 12 months. Change in Ht SDS with rhGH treatment over 12 months in CF range 1342 

from +0.2 to +0.6. The majority of published trials in CF have used rhGH at a dose of 0.3 1343 

mg/kg/wk. One RCT consisted of two treatment groups; a lower dose rhGH at 1344 

0.273mg/kg/wk and a higher dose rhGH at 0.49 mg/kg/wk in comparison to a untreated group 1345 

of controls (425). Both doses of rhGH in that study led to significantly better growth rate over 1346 

a short term period of 6 months but there appears to be a dose dependency of rhGH dose on 1347 

linear growth. It is worth noting that current clinical studies have excluded individuals with 1348 

CF who have abnormalities of glucose homeostasis/ CF related diabetes and those who are 1349 

colonized with Burkholderia cepacia. These reflect a sub-group of individuals who may be 1350 

more severely affected who may be more likely to present with growth failure in the clinical 1351 

practice to pediatric endocrinologists. It is therefore possible that rhGH may be less effective 1352 

in these individuals and care must be taken in extrapolating results of current clinical trials of 1353 

rhGH in CF when faced with clinical decisions of the role of rhGH in such individuals.  1354 

The three largest RCT of rhGH in CF all show that HV is approximately 150% higher 1355 

in the rhGH treated group compared with control/placebo (422,424,425). In the study by 1356 

Schnabel et al including two doses of rhGH, the “lower” dose of rhGH was comparable to the 1357 

dose used by Hardin et al (424) and Stavley et al (422). In that study, height velocity in the 1358 

group treated with the “higher” dose of rhGH of 0.49 mg/kg/week was approximately 180% 1359 

higher than the control group; whereas height velocity in the group treated with the “lower” 1360 

dose of 0.273 mg/kg/wk was approximately 150% higher than the control group (425)  1361 

The individuals included in the RCT by Schnabel et al (425) were in mid adolescents 1362 

as the inclusion criteria was bone age of 8-18 years, whereas the studies by Hardin et al (424) 1363 

and Stalvey et al (422) were younger, pre pubertal at baseline. Pubertal progression was 1364 
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reported by Stalvey et al (422) and did not differ between the rhGH and control group. Hardin 1365 

et al (424) and Schnabel et al (425) reported no progression in bone age over the treatment 1366 

period. No individual trial has reported response to rhGH depending on pubertal staging. In 1367 

the meta-analysis of pooled data by Phung OJ et al (414), prepubertal children appeared to 1368 

have greater increase in HV compared to pubertal children, whereas pubertal children appear 1369 

to have better weight gain than prepubertal children with CF treated with rhGH. In the trial by 1370 

Hardin et al a sub-analysis of change in Ht SDS was similar in those with Ht SDS < -2.2 and 1371 

those with Ht SDS > -1.2 (424). 1372 

Short term studies of up to 12 months in children and adolescents with CF, show 1373 

improvement in Ht SDS of +0.2 to +0.6 SD. However, none of the clinical trials have 1374 

included older adolescents with CF related diabetes and therefore the efficacy of rhGH in 1375 

these adolescents is unknown. Given the information that suggests that children with CF are 1376 

already shorter at birth and in infancy with low IGF-1 levels, there is a case to consider future 1377 

clinical trials of rhGH in younger children. Children with the ∆F508 genotype should also be 1378 

targeted for future rhGH studies given the strong link with growth failure in those with the 1379 

genotype. Compared with JIA and IBD, published trials of rhGH in CF have included 1380 

relatively large number of subjects but duration of follow-up is only 6-12 months. Conducting 1381 

clinical trials in these individuals can be challenging given the rest of the burden of clinical 1382 

care of CF and quality of life measures should be evaluated in future studies. 1383 

 1384 

7.5 Factors affecting growth response to rhGH in CF 1385 

7.5.1 Disease and glucocorticoid 1386 

Clinical studies of rhGH in CF have not related clinical outcome, pulmonary function 1387 

or GC use with responsiveness to rhGH therapy.  1388 

7.5.2 Systemic IGF-1 1389 

In CF, pooled data from subjects previously enrolled in clinical trials of rhGH 1390 

revealed that IGF-1 was significantly correlated with height and growth rate (408). 1391 

 1392 
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7.6 Efficacy of rhGH on disease process in CF 1393 

A role of rhGH in improvement of pulmonary disease in CF has been postulated to be 1394 

due to increase in absolute lung volume as a result of increased growth.  Another mechanism 1395 

could be due to improvement in lean body mass via the potential anabolic effect of rhGH.  In 1396 

individuals with CF, the ability of alveolar macrophages to kill Pseudomonas aueroginosa 1397 

was reduced compared with healthy controls and this was associated with reduction in lower 1398 

IGF-1 levels from broncho-alveolar lavage. Exposure of the macrophages to IGF-1 enhanced 1399 

their ability to kill Pseudomonas suggesting that the GH-IGF axis may have a role in 1400 

regulation of the immune system in CF (428). Preliminary evidence also suggest that IGF-1 1401 

may increase cystic fibrosis transmembrane conductance regulator which is defective in 1402 

individuals with CF, leading to altered airway composition and therefore pulmonary 1403 

infections (429). 1404 

In CF, several rhGH studies have shown a reduction in number of days of 1405 

hospitalization and the use of intravenous antibiotics (424,427). These are from studies which 1406 

did not include a placebo group. Current rhGH studies in CF have shown differing results on 1407 

objective measures of pulmonary function. One study noted significant improvement in 1408 

exercise tolerance measured by peak power output and VO2 max on cycle ergometer in the 1409 

rhGH treated children (426). Another rhGH study in a group of children and young adults 1410 

with CF (10-23 years) showed that maximal work load and VO2 max increased significantly 1411 

with rhGH therapy over 12 months (430). In randomized studies in CF, FVC and percentage 1412 

predicted FVC increased significantly in the rhGH group. FEV1 on the other hand increased 1413 

significantly in rhGH treated children but not percentage predicted FEV1.  1414 

It is generally accepted that pulmonary function should be reported as percentage 1415 

predicted (normalized to height). It is possible that improvement in pulmonary function may 1416 

not parallel improvement in height in the short term and that objective improvement in lung 1417 

function may happen later. In addition, a very short child with poor lung function may have a 1418 

relatively “normal” percentage predicted values as his/her lung function has been matched to 1419 

a younger shorter child, making interpretation of changes in pulmonary status in growth 1420 
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promoting studies difficult. Future studies should include newer methods of assessing 1421 

pulmonary disease in CF which are more sensitive to short term changes in respiratory status 1422 

and may not be related to body size. 1423 

 1424 

 8. Side effects of rhGH therapy in chronic disease 1425 

8.1 Glucose tolerance and insulin sensitivity 1426 

rhGH treatment has been reported to be associated with a decrease in insulin 1427 

sensitivity in some of the studies in children Turner syndrome (431,432), Prader Willi 1428 

Syndrome (433,434), small for gestational age (435) and idiopathic short stature (436). It may 1429 

also be associated with an increased risk of type 2 diabetes mellitus in children with risk 1430 

factors such as Turner Syndrome, Prader Willi Syndrome (437). Some of these conditions 1431 

themselves have an increased risk of reduction insulin sensitivity. 1432 

Children with inflammatory conditions may also be at risk of developing insulin 1433 

resistance as a result of the inflammatory process (438) as well as the use of concurrent GC 1434 

therapy (439). Approximately 50% of children with chronic rheumatic conditions on GC had 1435 

impaired glucose tolerance on oral glucose tolerance test (OGTT) (255)  In JIA, rhGH is 1436 

associated with reduction in insulin sensitivity, reflected by increased fasting and stimulated 1437 

insulin levels (261,263,268). In 43 children with JIA who had previously been treated with 1438 

rhGH, impaired glucose tolerance was observed in 37% and transient diabetes mellitus in 5%. 1439 

There was a higher incidence of impaired glucose tolerance in those who were treated late 1440 

possibly reflecting a longer duration of disease and greater exposure to exogenous 1441 

glucocorticoid. The two cases that developed frank diabetes were also overweight (440) .  1442 

In children with IBD, therapy with rhGH over a six months period led to increase in 1443 

fasting insulin with no abnormalities of glucose homeostasis. This cohort consisted of the 1444 

majority of individuals who have not been previously treated with GC.  Despite the fact that 1445 

fasting insulin levels increased following rhGH therapy in IBD, the clinical significance of 1446 

this is still unclear. The highest level of fasting insulin was 16 mU/L in a group of individuals 1447 

in mid and late adolescence (351). A recent consensus suggests that the threshold of fasting 1448 
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insulin for diagnosis of insulin resistance should be a level of ≥ 30 mU/L for those in tanner 1449 

stage 3 and 4; and ≥ 20 mU/L for those individuals in tanner stage 5 (441). 1450 

As mentioned previously, current clinical trials in CF have included individuals with 1451 

no abnormalities in glucose homeostasis and/or CF related diabetes. The impact of rhGH 1452 

treatment on glucose homeostasis in a child with CF and established diabetes is unknown. In 1453 

current clinical trials in CF, rhGH increases fasting glucose but there were no changes in post 1454 

prandial or peak glucose with OGTT. Increased fasting glucose was not seen in shorter term 1455 

rhGH studies (6 months). OGTT results were only available from short term 6 months studies. 1456 

HbA1C also did not change with rhGH therapy (414). However, given the glucose variability 1457 

in CF related diabetes, future studies should evaluate glucose homeostasis using continuous 1458 

glucose monitoring, which is increasingly recommended for diagnosis of CF related diabetes 1459 

(25,442). 1460 

To summarize this section, studies of the use of rhGH in children with chronic 1461 

disease treated with GC (JIA studies) show that its use may lead to impaired glucose tolerance 1462 

and type 2 diabetes in approximately 50% and 5% of treated individuals, respectively. In 1463 

published rhGH trials in IBD and CF, where use of GC is low, reduction in insulin sensitivity 1464 

is seen but no diabetes mellitus have been reported, although duration of rhGH treatment in 1465 

those studies are relatively short. The clinical significance of raised insulin especially in the 1466 

prepubertal child during rhGH treatment on long term metabolic outcome in these children is 1467 

unclear. The extent by which rhGH therapy can affect glucose homeostasis in individuals with 1468 

CF and established diabetes needs further exploration.  1469 

 1470 

8.2 Skeletal complications 1471 

Skeletal complications such as scoliosis (443), Legg-Calve-Perthes disease (444,445), 1472 

slipped capital femoral epiphysis (446,447)  and osteochondirtis (448) have been described in 1473 

children following commencement of rhGH therapy but systematic surveillance of the spine 1474 

especially in rhGH trials in children with chronic inflammatory disease has not taken place. In 1475 

one study, lumbar lordosis and scoliosis developed in similar numbers of rhGH and control 1476 
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subjects (5 in each group) with JIA (39). Only one patient with JIA treated with rhGH 1477 

developed hip osteochondritis (263); whereas there are no reports of Legg-Calve-Perthes 1478 

disease in JIA or IBD. Slipped upper femoral epiphyses have never been reported in this 1479 

group of patients. 1480 

There is a concern that the use of higher doses of rhGH may advance bone age and 1481 

accelerate pubertal progression but this has not been observed in children with JIA and IBD 1482 

(39,351). Age of onset of puberty in children with JIA with follow-up data at final adult 1483 

height did not differ between the rhGH and control group (39) 1484 

 1485 

8.3 Disease complications 1486 

The current published trials in children with chronic disease do not raise concerns 1487 

about rhGH worsening disease process. Previous studies in GHD and non GHD children 1488 

following rhGH injections suggest that the immune system may be activated although it is 1489 

unclear if the net effect is an up regulation or down regulation of inflammatory cytokines 1490 

(354-358). Six months therapy with rhGH was not associated with any significant changes in 1491 

a range of pro- and anti-inflammatory cytokines in children with IBD (Ref).  1492 

Intestinal fibrosis leading to strictures is a complication of CD, due to an excessive, 1493 

irreversible healing response to chronic inflammation. This is associated with overgrowth of 1494 

the muscularis mucosa, muscularis propria, excessive collagen deposition (449) and 1495 

mesenchymal cell hyperplasia (450).  In a rat model of colitis, rhGH was reported to stimulate 1496 

collagen accumulation in intestinal myofibroblasts (451)  but rhGH has also been reported to 1497 

reduce the severity of fibrosis via the induction of suppressor of cytokine signaling proteins 1498 

(452). There is a need to study this further especially when rhGH is administered in IBD. 1499 

 1500 

8.4 IGF-1 levels and cancer 1501 

The use of replacement rhGH therapy for GH deficiency in children previously 1502 

treated for childhood cancer has not been shown to be associated with tumor recurrence or 1503 

development of new tumors. The Childhood Cancer Survival Study (CCSS) identified an 1504 
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increased risk of meningioma in children treated with rhGH (453,454), although most of those 1505 

children had also received radiation to the brain which by itself could be associated with the 1506 

development of meningioma (453,454). In addition, the CCSS did not match rhGH treated 1507 

patients with rhGH naive patients matched for potential confounders for development of 1508 

second tumors. A recent study that matched for age, site of primary diagnosis, date of 1509 

radiotherapy, radiation dose and fractionation found no increased risk of tumor recurrence or 1510 

development of second tumors in rhGH treated patients (455).  1511 

An association between increased risks of malignancies has been reported in children 1512 

with JIA (456-458) and IBD (459,460)  which may seem to be unrelated to treatment with 1513 

immunomodulators and biologic therapy. Currently there are no reported associations 1514 

between cancer in children with JIA and IBD treated with rhGH. Patients with acromegaly 1515 

with excessively high GH and IGF-1 levels have an increased risk for thyroid, breast and 1516 

colorectal carcinoma (461-463) . Preliminary evidence also suggests that patients with IGF-1 1517 

deficiency due to genetic mutations in the GH receptor with very low/undetectable IGF-1 1518 

levels appear to be protected from cancer development (464). 1519 

 In JIA and IBD, rhGH leads to an increase in IGF-1 and IGFBP-3 levels. Bechtold et 1520 

al’s RCT of rhGH (0.33 mg/kg/wk) in JIA showed, reassuringly, that IGF-1 and IGFBP-3 1521 

remained within the normal reference ranges. Average IGF-1 SDS and average IGFBP-3 SDS 1522 

during rhGH were -0.93 and -0.24, respectively (39). Following rhGH (0.53 mg/kg/wk) for 1523 

active CD, IGF-1 SDS increased from -0.4 at baseline to +1.8 SD at 12 weeks and + 3.3 SD at 1524 

24 weeks. IGF-1 SDS was as high as +5SD at 24 weeks which is an issue to be of concern 1525 

(350) . 1526 

Even if systemic IGF-1 levels may not be excessively raised with relatively “high” 1527 

dose rhGH in children with chronic disease, there is the concern that systemic IGF-1 levels 1528 

may not reflect local expression of IGF-1 (465) . Animal models of colitis treated with rhGH 1529 

do not show increased expression of local IGF-1 (173,175). Suppressor of cytokine signaling 1530 

2 (SOCS2) which may be altered in chronic inflammation and which negatively regulates GH 1531 

action, has been reported to limit intestinal GH action (466,467) . It is possible that this may 1532 
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be a protective mechanism against high systemic IGF-1 (68,468). However, in the mouse 1533 

model, the protective effect of SOCS2 on the intestines was only seen in older animals. 1534 

Clearly, long term surveillance of rhGH treated patients with JIA, IBD and CF is crucial.  1535 

 1536 

9. IGF-1 and combined GH / IGF-1 in chronic inflammatory disease 1537 

As discussed, GH mediates its effects on target tissues via direct and indirect effects 1538 

(41). The direct effects of GH are those mediated via the GH receptor; indirect effects are 1539 

mediated largely via GH related peptides like IGF-1 but also IGF binding proteins. Whilst 1540 

systemic factors (GH and IGF-1) have independent effects on target organs like the growth 1541 

plate, local IGF-1 levels may play a more important role in regulation of longitudinal growth.  1542 

Given the possibility of a state of functional GH resistance with resultant secondary 1543 

IGF-1 insufficiency in chronic inflammation, rhIGF-1 maybe a therapeutic option for these 1544 

children (469). The use of rhIGF1 in children with primary IGF-1 deficiency due to mutations 1545 

in the GH receptor is effective in improving linear growth. As opposed to complete catch up 1546 

growth that is seen in children with GH deficiency treated with rhGH, children with primary 1547 

IGF-1 deficiency due to mutations in the GH receptor treated with long term rhIGF-1 still 1548 

remain significantly short (470,471).  1549 

Whilst there are currently no studies of rhIGF-1 in children with JIA or IBD, one 1550 

small randomized trial of rhIGF-1 (80 mcg/kg twice daily) compared with placebo, in 7 1551 

children with CF failed to show an effect on linear growth despite normalization of serum 1552 

IGF-1. The study showed a reduction in insulin sensitivity with rhIGF-1 treatment. The dose 1553 

of rhIGF-1 used in the study is within the recommended starting dose for children with 1554 

primary IGF-1 deficiency. Doses up to 120 mcg/kg twice daily, can be used in those children 1555 

(472). The lack of improvement of linear growth with conventional dose of rhIGF-1 in the 1556 

study with CF may point to a degree of functional IGF-1 resistance. Therefore, higher doses 1557 

of rhIGF-1 may be needed to be evaluated in future studies. The potential adverse effect of 1558 

hypoglycemia, may preclude the use of higher dose of rhIGF-1.  1559 
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Interestingly, systemic IGFBP-3 did not increase with rhIGF-1 in the study of 1560 

children with CF. On the other hand, some but not all studies of rhGH in chronic 1561 

inflammatory conditions have shown that IGFBP-3 can increase with rhGH treatment. rhIGF-1562 

1 may in fact reduce the level of IGFBP-3 and IGF-2 in children with idiopathic short stature 1563 

(473). IGFBP-2 did increase with rhIGF-1 treatment in those children. There is also the 1564 

theoretical possibility that rhIGF-1 administration may suppress endogenous GH secretion. In 1565 

TNBS rats with colitis treated with rhIGF-1, there was a rise in IGF1 levels and improved 1566 

linear growth linear growth, although growth rate was only 50% of those of control rats (138).  1567 

A trial of rhIGF1 in children with idiopathic short stature and “low” IGF1 who were 1568 

approximately 7 years at baseline, also raised the concern that rhIGF-1 may accelerate 1569 

skeletal maturation, which would be disadvantageous for adult height prognosis. Twelve 1570 

children (14.1%) in the two rhIGF-1 arms (80 mcg/kg and 120 mcg/kg twice daily) as 1571 

opposed to one (4.4%) in the control arm entered into puberty during the one year (473). This 1572 

is in contrast to the use of higher dose of rhGH in idiopathic short stature which does not lead 1573 

to increase in skeletal maturation and advancement of pubertal progression (474).  1574 

A pilot pharmacokinetic study of rh-IGF-1 at 120 mcg/kg/day in eight children with 1575 

severe CD lead to significant increase in systemic IGF-1 with almost half the cohort reaching 1576 

IGF-1 SDS > +2.0 (475). The authors developed a mathematical model that allows prediction 1577 

of a dose of rhIGF1 that could be used to maintain systemic IGF-1 below +2.5 SD of the 1578 

mean accounting for age, weight and PCDAI. Whether this mathematical model is valid over 1579 

a longer period of time where changes like growth and puberty may play a greater role is 1580 

unclear. In addition, given the fluctuating nature of CD, it is unclear how well the PCDAI 1581 

may reflect disease activity in this model. A randomized trial of dose titration of rhGH based 1582 

on systemic IGF-1 in children born small for gestational age show less favorable growth 1583 

response, although IGF-1 levels remained in the physiological ranges in the dose titrated 1584 

group (476) .  1585 

Given the importance of GH and IGF-1 in longitudinal growth, combined treatment 1586 

with rhGH and rhIGF-1 may be more physiological and beneficial for growth. Reports of 1587 
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combined use in humans show a higher serum concentration of IGF-1 in those who had 1588 

combined therapy versus those who had IGF-1 alone, possibly related to the negative 1589 

feedback effect of IGF-1 on pituitary GH secretion. A recent study in female rats, however  1590 

showed that combined rhGH and rhIGF1 therapy did not lead to further improvement in linear 1591 

growth despite an improvement in cortical bone mass  (57). On the other hand, in an 1592 

experimental rat model of uremia, combination therapy appears to be more effective than 1593 

rhIGF-1 or rhGH alone as growth promoting therapy (477). The addition of rhGH to rhIGF-1 1594 

may reverse the insulin suppressive effects of the latter and may have anti-catabolic effects on 1595 

protein synthesis and muscle mass in seven calorie restricted adults (478). Given the 1596 

uncertainties of the efficacy of high dose rhGH in improving muscle mass in children with 1597 

chronic inflammation thus far, combination therapy may confer advantages in that respect.  1598 

Combining rhGH with rhIGF-1 may prevent the glucose lowering effect of IGF-1 (478). Up 1599 

to 20% of children with idiopathic short stature treated with rhIGF1 120 mc/kg twice daily 1600 

were hypoglycemic (478). The use of IGF-1 may itself counter the insulin- resistant state that 1601 

may be induced by the use of high dose rhGH therapy in a group of children who may be 1602 

insulin resistant due to their state of chronic inflammation as well as the use of GC.  1603 

Given the evidence of relative GH resistance in children with chronic inflammation, 1604 

there is good biological rationale to explore the use of rhIGF1 on its own or in combination 1605 

with rhGH in future well designed collaborative RCTs.  1606 

 1607 

10. Summary and perspective 1608 

10.1 Clinical studies of growth and pubertal disorders  1609 

It is clear that clinical outome studies on growth, pubertal development and AH in 1610 

JIA, IBD and CF treated with contemporary treatment regimens are needed. Height, 1611 

especially AH, needs to be interpreted in the context of the child’s midparental height. As 1612 

degrees of delayed puberty can occur in these children, interpreting HV needs to be in the 1613 

context of bone age or pubertal staging. The use of change in Ht SDS may be a better method 1614 

of defining poor growth given the paucity of normative longitudinal data for HV. Ideally, 1615 
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newer studies should consider reporting growth problems in these children by describing Ht 1616 

SDS and change in Ht SDS or HV adjusted for bone age/puberty (372). Undoubtedly, studies 1617 

of AH are needed from contemporary groups of children with chronic disease, due to the 1618 

constantly changing landscape of therapies of chronic disease. Published data on AH may 1619 

never be reflective of current cohort of individuals managed in the clinic, given the time it 1620 

takes to acquire information on long term growth outcome and the possibility of new 1621 

therapies. 1622 

Outstanding questions in the clinical aspect of growth and pubertal disorders include: 1623 

(1) What are the clinical predictors of persistent growth failure in children with chronic 1624 

disease? Are there informative biomarkers eg disease parameters, inflammatory 1625 

cytokines, genetic factors or novel biomarkers early on in the course of the disease? 1626 

(2) What are early predictors for catch-up growth following anti-cytokine therapy in JIA 1627 

and IBD? What is the utility of systemic vs local markers of inflammation for 1628 

prediction of growth response? Can composite assessment of systemic inflammation 1629 

and systemic markers of the GH/IGF axis increase the prediction? 1630 

(3) How much does poor growth and pubertal disorders contribute to abnormal bone 1631 

accrual and muscle development in children with chronic disease?  1632 

(4) What is the impact of poor growth, short stature and delayed puberty on the quality of 1633 

life of adolescents with chronic disease and do they differ from children with no 1634 

underlying chronic condition? Are adolescents with chronic disease more bothered 1635 

about short stature/poor growth than delayed puberty? 1636 

 1637 

10.2 Systemic abnormalities of GH/IGF-1 in chronic disease 1638 

This review identified a number of heterogenous studies of the GH/IGF-1 axis 1639 

suggesting multiple defect in the secretion and sensitivity of the GH/IGF-1 axis. Studies have 1640 

evaluated IGF-1 and IGFBP-3, although ALS have not been extensively studied in these 1641 

conditions. 1642 

Important questions to be answered in this area include: 1643 
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(1) How does inflammation impact on formation of the ternary complex and how 1644 

does this change following therapy of chronic disease especially anti-cytokine? 1645 

(2) What is the link between inflammation and comprehensive studies of the ternary 1646 

complex? 1647 

(3) The direct role of IGF binding proteins on long bone growth in chronic disease is 1648 

unclear. We have touched on the possible role of IGFBP-1 and -2 which requires 1649 

further clarification. A consideration of the differential effects of all the binding 1650 

proteins in chronic disease is needed. For instance, is there compensatory changes 1651 

in IGF binding proteins with chronic inflammation and what is the impact on 1652 

regulation of growth in chronic disease? 1653 

(4) What is the IGF-1 response to rhGH injections as part of the IGF- generation test 1654 

and how does this GH sensitivity change with disease factors? 1655 

 1656 

10.3 Growth plate regulation in chronic disease 1657 

 Recent growth plate studies have demonstrated that pro-inflammatory cytokines have 1658 

a direct effect at the level of the growth plate. GC treatment and malnutrition can lead to 1659 

impairment at the level of the growth plate.  1660 

Critical research questions to be answered in this area which may impact on clinical 1661 

management and research include: 1662 

(1) How does cytokine, GC and malnutrition impact on local GH and IGF-1 1663 

signalling? 1664 

(2) How do intrinsic growth plate factors interact with extrinsic systemic factors in 1665 

the regulation of growth in chronic disease? 1666 

(3) What is the role of IGF binding proteins at the local level in chronic disease? 1667 

(4) What is the interaction between FGF21 and cytokines and how may that impact 1668 

on local bone growth/local growth factor signalling? 1669 

 1670 

10.4     Endocrine growth promoting therapies in chronic disease 1671 
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There is a need to perform larger, more conclusive studies of rhGH therapy which 1672 

explore the issues raised in this review. Close collaboration with pediatric rheumatologists, 1673 

gastroenterologists and respiratory clinicians would ensure that appropriate assessment of 1674 

disease status is performed. Given the complexity of the management of children with chronic 1675 

disease and ongoing burden of the disease, the opinion of the young person and their families 1676 

should be sought in the design of future therapeutic trials of growth promoting therapies.  1677 

Disease activity should be assessed using a range of methods. For CD, caution is 1678 

needed if the PCDAI is used. Data should be presented for the different domains of the 1679 

PCDAI, if that is to be used as a disease marker. In CF, more objective assessment of disease 1680 

should be evaluated in future studies other than hospitalizations. Evaluation of inflammatory 1681 

state using inflammatory cytokines should include assessment of more than 1 cytokine and in 1682 

addition measurements of cytokines at local organs (eg gastrointestinal tract, synovial fluid) 1683 

may be more accurate but more challenging to obtain in research studies. 1684 

Research agenda to be considered include:  1685 

(1) A definitive trial of rhGH on improving growth in children with chronic disease 1686 

especially in children with IBD is needed. This would require collaboration at a 1687 

national level at the least.  1688 

(2) It is clear that a degree of functional GH insensitivity exists in chronic disease 1689 

and a higher dose of rhGH may be needed. A study on dose comparison 1690 

addressing longer term growth outcome and potential adverse events 1691 

(abnormalities in glucose homeostasis) in these groups of children are needed. 1692 

Preliminary evidence from the dose comparison trial of rhGH in CF suggest that 1693 

the percentage increase in growth rate with the “higher” dose of rhGH leads to 1694 

marginal improvement in growth velocity (425) .  1695 

(3) It is unclear whether the dose of rhGH should be titrated by systemic IGF-1 or 1696 

growth response and this requires further research. 1697 

(4) It is possible that in most children a short course of therapy for 12 months or 1698 

during periods of poor growth may be sufficient for improving growth and 1699 
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prolonged therapy may not be necessary. Intermittent therapy with rhGH during 1700 

periods of relatively poor growth may also be more cost effective. This method of 1701 

using rhGH as opposed to continued use until final height needs further 1702 

exploration. 1703 

(5) Future rhGH studies should also examine the effect of therapy on disease, bone 1704 

health, body composition, cardiovascular health and quality of life in these 1705 

children with chronic disease. It is also unclear if long term outcome of addition 1706 

of rhGH to sex steroid confers better height prognosis in those groups of children 1707 

who are growing slowly with delayed puberty.  1708 

(6) Given that some children with chronic disease continue to grow slowly with anti-1709 

cytokine therapy (18) and that improvement in height with anti-cytokine maybe 1710 

marginal (21,219), the role of rhGH in addition to anti-cytokine therapy should 1711 

also be explored in future studies 1712 

(7) The impact of pubertal induction on growth in chronic disease deserves higher 1713 

research priority. There are numerous unanswered questions on the dose, 1714 

duration, route of administration and timing of introduction of sex steroid in 1715 

chronic disease.  1716 

(8) Given the relative GH resistant state in chronic inflammation, the role of 1717 

combination therapy of rhIGF-1 with rhGH or rhIGF-1 on its own may need to be 1718 

explored in future well designed trials. 1719 

(9) Given the range in deficits in systemic levels of GH/IGF-1 in chronic disease, can 1720 

these be used to determine choice of growth promoting therapies ie rhGH, rhIGF-1721 

1 or combination therapies and therefore growth response? 1722 

 1723 

11. Recommendations for clinical practise 1724 

In the absence of extensive data, the off label use of rhGH in chronic disease in 1725 

countries where rhGH may be available needs to be considered very carefully and discussed 1726 

thoroughly with the young person and the family. rhGH therapy should only be considered 1727 
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after the primary disease has been treated as aggressively as possible, GC use has been 1728 

minimized and the nutritional status has been optimized. In patients with delayed puberty, this 1729 

should be addressed before the consideration of rhGH, although data on pubertal induction in 1730 

these children is limited (479,480).  If rhGH is used, the definition of response in children 1731 

with chronic disease is unclear but may be better defined as change in Ht SDS (> +0.5 SD 1732 

over twelve months).  1733 

It is our opinion that fasting glucose and HbA1C should be considered in all children 1734 

with chronic disease prior to commencement of rhGH therapy. Ideally, an OGTT should be 1735 

performed at baseline as well. Given the challenges in interpretation of insulin levels in 1736 

groups of children who are in puberty, there is a case to omit its measurement in the clinical 1737 

monitoring of children with chronic disease treated with rhGH therapy. It is our opinion that 1738 

results from an OGTT may be more useful for clinical decision making and should therefore 1739 

be perfomed at annual intervals following rhGH therapy as fasting glucose and HbA1C are 1740 

poor predictors of abnormal glucose homeostasis in children with chronic disease treated with 1741 

rhGH (Simon 2010). In CF, there may be a role of continuous glucose monitoring for 1742 

monitoring of glucose homeostasis. In children with evidence of diabetes (eg CF diabetes) or 1743 

impaired glucose tolerance at baseline, there needs to be careful discussion with the family 1744 

regarding the risk and benefit of rhGH therapy. In our opinion, the detection of impaired 1745 

glucose tolerance requires reconsideration of therapy. If oral GC dose can be reduced, we 1746 

recommend close monitoring with earlier re-evaluation with OGTT. If this is not possible, or 1747 

type 2 diabetes mellitus is diagnosed on OGTT, reduction of dose of rhGH is recommended, 1748 

provided that grwth response is favourable.  1749 

Annual assessment of IGF-1 level should be undertaken but interpretation of IGF-1 1750 

levels needs to take into account of delayed puberty in these children. Regular assessment of 1751 

puberty and annual bone age is also important. Care must be taken in the interpretation of 1752 

bone age in children with inflammatory arthritis. Ideally, this should be performed in the hand 1753 

not affected by arthritis. 1754 

 1755 
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12.  Conclusion 1756 

The pathophysiology of growth failure in children with chronic inflammation is 1757 

multi-factorial although the precise mechanism of the effects of cytokine, glucocorticoid and 1758 

malnutrition on systemic and local growth factors is still unclear. The relative contribution of 1759 

those factors on growth failure and the GH/IGF axis is unclear. Clinical studies in children 1760 

with JIA, IBD and CF point to multiple levels of defect of the GH/IGF-1 axis although 1761 

comprehensive evaluation of systemic growth factors in these children especially in relation 1762 

to modern therapy is still limited. The interaction of the endocrine effects of the GH/IGF-1 1763 

axis with local growth plate regulating factors and the impact on linear growth in chronic 1764 

disease is unclear and needs to be studied.  1765 

Although there is some preliminary evidence of the effects of rhGH on short term 1766 

linear growth in children with chronic disease, catch-up growth maybe incomplete. Longer 1767 

term treatment studies and its effects on adult height in these children should be performed. 1768 

The impact of improvement in linear growth on quality of life in these children is unknown. 1769 

The cost effectiveness and implication of treatment (burden of injections) needs careful 1770 

consideration.  Most children with chronic inflammatory disease will achieve their genetic 1771 

potential with aggressive disease control and nutritional support. A small subgroup may have 1772 

persistent growth failure leading to significant short stature and these children may benefit 1773 

from adjuvant growth promoting therapy. Collaborative clinical trials and translational studies 1774 

are needed and to be encouraged.  1775 
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Figure 1: Age Of Presentation Of Chronic Disease In Childhood 

CF: cystic fibrosis, DMD: duchenne muscular dystrophy; JIA: juvenile idiopathic arthritis; 
CRI: chronic renal insufficiency; IBD: inflammatory bowel disease; SLE: systemic lupus 

erythematosus; CTD: connective tissue diseases 
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Figure 2: Mechanism Of Growth Failure In Chronic Inflammatory!Disease!
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Fig 3: Multiple Level Of Defect Of the GH/IGF-1 Axis In Children With Chronic Disease 

GH: growth hormone; IGF-1: insulin like growth factor-1; IGFBP: insulin growth factor binding protein 
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Figure 4: Effects Of TNFα And IL1β On ATDC5 Cell Line Chondrogenesis 
 

MacRae VE et al J Endocrinol 2006; 189: 319-28  71 
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Figure 5: Effects of TNFα and IL1β in the metatarsal model depending on days of exposure to cytokine 
 

MacRae Ve et al J Endocrinol 2006; 189: 319-28 71 
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Figure 6a: Effects of addition of antibodies to metatarsals exposed to TNFα and IL1β        
Martensson K et al J Bone MinerRes 2004; 19:1805-12 73 

!

!
Figure 6b: Effects of addition of antibodies to metatarsals exposed to synovial fluid of a 

child with systemic JIA during acute relapse 
MacRae VE et al Clin Endocrinol 2007; 67:442-8 86 

PBS: phosphate buffered solution; SF-A: synovial fluid from child A; Ab: antibody 
!
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Figure 7:  Synchronized mean growth curves from baseline to adult height in 13 children with 
JIA treated with rhGH (solid lines) in comparison with 18 controls (dashed lines) 

Bechtold S et al J Clin Endocrinol Metab 2007; 92: 3013-8 39 
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Figure 8: Height SDS In Children And Adolescent With IBD And Body Image Domain Score On 
IMPACT III Questionnaire 

 
(Mason A et al Horm Res Pediatr 2014; 83:45-54) 

 
 
 
 

!



!

!

 

Figure 9: Peak Growth Hormone (GH) and Insulin-Like Growth Factor 1 (IGF1) To Insulin 
Tolerance Test (ITT) In Children With Inflammatory Bowel Disease (IBD). 

IGF1: insulin-like growth factor 1, GH: growth hormone, SDS: standard deviation score.  

Grp A: Peak GH < 3 mcg/l, IGF1 SDS < 0 (Functional GH deficiency).  

Grp B: Peak GH < 6 mcg/l but ≥3 mcg/l, IGF1 SDS < 0 (Functional GH insufficiency).  

Grp C: Peak GH ≥ 6 mcg/l, IGF1 SDS < 0 (Functional GH resistance).  

Grp D: IGF1 SDS ≥ 0 (Functional GH-IGF1 resistance).  

Wong SC et al Clin Endocrinol 2011; 74: 599-607 338 



!

Figure 10:  Height velocity (HV) and height SDS before and after 6 months of therapy with recombinant human growth hormone 
(rhGH) or no therapy (Ctrl) in inflammatory bowel disease.  

HV: P = 0·003 (rhGH – baseline vs6 months), P = 0·58 (Ctrl – baseline vs 6 months) Ht SDS: P = 0·003 (rhGH – baseline vs 6 months),P = 0·14 (Ctrl – baseline vs 6 months). 

Wong SC et al Clin Endocrinol 2011; 74:599-607 351 



  
No patients 

 
Age at assessment  

 

 
Adult height result 

 
Deviation from mid-parental height 

 
Gare et al 
(1995) 232 
 

 
124 

(33 oligo, 58 poly, 2 systemic, 30 others) 
 

 
18 yrs 

 
Females 165.9 cm, males 176.9 cm 

 
ND 

Zak et al 
(1999) 233 

 

65 
(21 oligo, 39 poly, 5 systemic) 

26 yr Ht SDS -0.3 (11% Ht SDS < -2.0) ND 

Minden et al 
(2002) 195 

 

215 
(85 oligo, 30 poly, 30 systemic, 30 others) 

23 yrs Females 166 cm, males 179 cm ND 

Packham et al 
(2002) 236 

 

259 
(70 oligo, 78 poly, 52 systemic, 61 others) 

28 yrs Ht SDS females -1.1 
Ht SDS males -0.7 

ND 

Wang et al 
(2002) 234 

 

33 
(7 oligo, 18 poly, 8 systemic) 

  20 yrs 
 

Infrequent GC 165.6 cm 
Intermittent GC 165.8 cm 
Prolonged GC 147.6 cm 

 

Infrequent GC +3.0 cm above MPH 
Intermittent GC +1.0 cm above MPH 
Prolonged GC -12.0 cm from MPH 

Simon D et al 
(2002) 204 
 

24 systemic 25 yrs Ht SDS -2.0 
41% Ht SDS < -2.0 

-1.7 SD below MPH SDS (87% below MPH SDS) 

Minden et al 
(2009) 235 

 

141 JIA 
 

18 ys Females 165 cm, males 176 cm 
Female poly Ht SDS -0.5 
Males poly Ht SDS -0.6 

Females systemic Ht SDS -0.5 
Males systemic Ht SDS -2.1 

 

ND 

 

Table 1: Published Studies Of Adult Height In Childhood Onset Juvenile Idiopathic Arthritis 

JIA: juvenile idiopathic arthritis; Ht: height; cm: centimeter; SDS: standard deviation score; ND: no details; GC: glucocorticoid; MPH: mid-parental height 

 



  
Study design 

 
No patients 

 
Duration 

(yrs) 

 
rhGH dose 
(mg/kg/wk) 

 
Age baseline 

(yrs) 

 
HV baseline 

(cm/yr) 

 
HV follow-
up (cm/yr) 

 
% change 

HV 

 
Ht SDS 
baseline 

 
Ht SDS 

follow-up 

 
Change Ht 

SDS 
 

 
Butenandt et 
al (1979) 256 

 

 
Retrospective 

 
20 

 
Variable 

 
0.18 

 
13.0 

 
2.7 

 
6.2 (1st yr) 

 
130% 

 
- 

 
- 

 
- 

Svantesson et 
al (1991) 259 

 

Retrospective 6 Variable 0.16-0.46 13.7 2.8 6.7 (1st yr) 139% -3.4 - - 

Davies et al 
(1994) 257 
(1997) 244 

 

Prospective 10 low dose 
10 high dose 

1.0 0.15 
0.30 

9.2 
10.6 

2.4 
2.0 

4.5 
6.1 

88% 
205% 

-3.0 
-3.4 

- - 

Touati et al 
(1998) 260 

 

Prospective 14 1.0 0.46 10.8 1.9 5.4 184% -4.3 -4.3 0 

Al-Mutair et 
al (2000) 254 

 

Retrospective 10 Variable 0.16-0.30 11.9 2.5 4.8 (1st yr) 
5.4 (2nd yr) 

92% 
116% 

- - - 

Simon et al 
(2003) 258 

 

Prospective 14 3.0 0.46 12.5 2.0 6.0 (1st yr) 
5.0 (2nd yr) 
4.1 (3rd yr 

 

200%  
150% 
105% 

-4.6 -4.5 (1st yr) 
-4.3 (2nd yr) 
-4.3 (3r yr) 

+0.1 
+0.3 
+0.3 

Bechtold et al 
(2004) 255 

 

Prospective 11 4.0 0.25-0.33 10.3 - - - -3.9 -2.1  +1.8 

 

Table 2: Published Non Randomized Studies Of Recombinant Human Growth Hormone On Linear Growth In Children With Juvenile 
Idiopathic Arthritis 

yrs; years; rhGH: recombinant hman growth hormone; mg: milligram; kg: kilogram; wk: week; cm; centimetre; HV: height velocity; Ht: height; SDS: standard deviation 
score 

 



  
Study design 

 
No patients 

 
Duration 

(yrs) 

 
rhGH dose 
(mg/kg/wk) 

 
Age 

baseline 
(yrs) 

 
HV baseline 

 

 
HV follow-up  

 
% change 

HV 

 
Ht SDS 
baseline 

 
Ht SDS 

follow-up 

 
Change Ht 

SDS 
 

 
Bechtold et al 
(2001) 266 

 

 
RCT 

 
14 rhGH 

5 rhGH (GHD) 
16 Ctrl 

 

 
2.0 

 
0.33 
0.16 

 
9.7 

10.5 
7.8 

 
-2.9 SD 
-3.1 SD 
-3.2 D 

 
+0.3 SD 
-0.5 SD 
-1.2 SD 

 
- 

 
-3.7 
-2.6 
-2.9 

 
-2.9 
-2.4 
-3.2 

 
+0.8 
+0.2 
-0.3 

Bechtold et al 
(2003) 265 

 

RCT 18 rhGH (9GHD) 
 

20 Ctrl 

4.0 0.33 
 (0.20 for GHD) 

10.5 
 

9.6 

2.4 cm/yr 
 

2.3 cm/yr 

4.7 cm/yr 
 

3.4 cm/yr 

96% 
 

48% 

-3.3 
 

-2.3 

-2.3 
 

-3.0 

+1.0 
 

-0.7 
Saha et al 
(2004) 250 

 

RCT  
(Cross-over 

trial rhGH vs 
placebo) 

 

24 0.5 0.23 9.0 - +2.0 SD (rhGH) 
-0.1 SD (placebo) 

- -2.1 
-2.2 

-1.9 
-2.0 

+0.2 
+0.2 

Grote et al 
(2006) 267 

 

RCT 10 rhGH 
7 Ctrl 

 

2.0 0.32 8.0 
8.1 

- - - -1.4 
-1.9 

-1.0 
-2.1 

+0.4 
-0.2 

Simon et al 
(2007) 268 

 

RCT 15 rhGH 
15 Ctrl 

3.0 0.47 5.6 
5.7 

2.7 cm/yr 
2.6 cm/yr 

6.5 cm/yr 
5.0 cm/yr 

141% 
85% 

-1.1 
-1.0 

-0.4 
-1.8 

+0.7 
-0.8 

Bechtold et al 
(2007) 39 

 

RCT 13 rhGH 
18 Ctrl 

13.7 
14.4 

0.33 4.8 
4.0 

-2.2 SD 
-2.6 SD 

- - -2.7 
-3.5 

-1.6 
-3.4 

+1.1 
+0.1 

 

Table 3: Published Randomized Trials Of Recombinant Human Growth Hormone On Linear Growth In Children With Juvenile 
Idiopathic Arthritis 

RCT: randomized controlled trials; yrs; years; rhGH: recombinant hman growth hormone; mg: milligram; kg: kilogram; wk: week; cm; centimetre; HV: height velocity; Ht: 
height; SDS: standard deviation score 

 



  
No patients 

 
Age at assessment 

 

 
Adult height result 

 
Deviation from mid-parental height 

 
Castile et al 
(1980) 316 

 

 
177 CD 

 
23 yrs 

 
Medically managed Ht SDS -0.6 
Surgically managed Ht SDS -0.3 

 
ND 

Griffiths et al 
(1993) 3 

 

67 CD 17 yrs and HV < 1 cm/yr Females Ht SDS -0.5 
Males Ht SDS -1.0 

ND 

Markowitz et 
al (1993) 317 

 

48 IBD 
(38 CD, 10 UC) 

21 yrs CD: 56% < 25th centile 
UC: 25% < 5th centile 

 

ND 

Hildebrand et 
al (1994) 303 

124 IBD 
(46 CD, 60 UC18 IBDU) 

 

>16 yrs or HV < 0.5 cm/yr CD Ht SDS +0.4 
UC Ht SDS +0.2 

IBDU Ht SDS -0.1 
 

ND 

Ferguson et al 
(1994) 314 

 

70 IBD 
(50 CD, 20 UC) 

                     ND CD males 175 cm, CD females 157 cm 
UC males 175 cm, UC females 159 cm 

ND 

Alemazedeh et 
al (2002) 318 

 

135 CD ≥ 18 yrs Prepubertal onset Ht SDS -1.0 
Pubertal onset -0.1 
Adult onset +0.1 

 

Prepubertal onset 2.1 cm below MPH 
Pubertal onset 0.6 cm above MPH 

Adult onset 0.9 cm above MPH 

Sawczenko et 
al (2003) 8 

 

43 CD > 16 yrs Ht SDS -0.7 5.9 cm below MPH 

Sawczenko et 
al (2006) 9 

 

123 CD HV < 1 cm/yr Ht SDS -0.3 3 cm below MPH but 20% were ≥ 8 cm below MPH 

Lee et al 
(2010) 319 

 

141 IBD ≥ 18 yrs “Growth impaired” Ht SDS -1.3 
“Not growth impaired” Ht SDS -0.1 

“Growth impaired” -0.7 SD lower than MPH SDS 
“Not growth impaired” -0.1 SD lower than MPH SDS 

Table 4: Published Studies Of Adult Height In Childhood Onset Inflammatory Bowel Disease 

IBD: inflammatory bowel disease; CD: crohn’s disease; UC: ulcerative colitis; IBDU: inflammatory bowel disease unclassified; Ht: height; cm: centimeter; SDS: standard 
deviation score; ND: no details; MPH: mid-parental height 



                           
Study design 

 
No patients 

 
Duration 

(yrs) 

 
rhGH dose 
(mg/kg/wk) 

 
Age 

baseline 
(yrs) 

 
HV baseline 

 

 
HV follow-up  

 
% change 

HV 

 
Ht SDS 
baseline 

 
Ht SDS 

follow-up 

 
Change 
Ht SDS 

 
 
McCaffery et 
al (1974) 342 

 

 
Retrospective 

 
2 

 
0.5 

 
10 mg for 5 days 
then 3 mg three 
times per week 

 

 
- 

 
6.5 cm/yr 

 
9.2 cm/yr 

 
42% 

 
- 

 
- 

 
- 

Henker et al 
(1996) 343 

 

Retrospective 3 2.0 0.9-1.0 mg daily 16.2 5.0 cm/yr 10.4 cm/yr 108% -3.4 -1.6 +1.8 

Mauras et al 
(2002) 344 

 

Prospective 10 0.5-1.0 0.35 11.9 4.0 cm/yr 7.4 cm/yr (1st yr) 85% - - - 

Wong et al 
(2007) 345 

 

Retrospective 7 Variable 0.15-0.31 15.9 2.5 cm/yr 3.7 cm/yr (0.5 yrs) 48% -2.2 -1.9 +0.3 

Heyman et al 
(2008) 346 

 

Prospective 8 rhGH 
24 historical Ctrl 

1.0 0.30 12.6 
12.5 

3.0 cm/yr 
4.0 cm/yr 

8.3 cm/yr 
4.9 cm/yr 

177% 
23% 

-2.0 
-1.8 

-1.2 
-1.6 

+0.8 
+0.2 

Slonim et al 
(2009) 348 

 

Retrospective 4 4.5-7.5 0.18-0.20 13.8 - - - -3.5 -1.9 +1.6 

 

Table 5: Published Non-Randomized Studies Of Recombinant Human Growth Hormone On Linear Growth In Children With 
Inflammatory Bowel Disease 

yrs; years; rhGH: recombinant human growth hormone;Ctrl: control; mg: milligram; kg: kilogram; wk: week; cm; centimetre; HV: height velocity; Ht: height; SDS: standard 
deviation score 

 



                           
Study design 

 
No patients 

 
Duration 

(yrs) 

 
rhGH dose 
(mg/kg/wk) 

 
Age baseline 

(yrs) 

 
HV baseline 

 

 
HV follow-up  

 
% change 

HV 

 
Ht SDS 
baseline 

 
Ht SDS 

follow-up 

 
Change Ht 

SDS 
 

Calenda et al 
(2005) 349 

 

RCT 
(Placebo 

cross-over) 
 

3 rhGH 
4 Ctrl (placebo) 

1.0 0.35 11.0 - - - - - +0.1 SD 
+0.2 SD 

Denson et al 
(2010) 350 

 

RCT 10 rhGH 
10 Ctrl 

0.25 0.53 12.0 
13.0 

- +2.0 SD 
-2.1 SD 

 

- - - - 

Wong et al 
(2011) 351 

 

RCT 11 rhGH 
11 Ctrl 

0.5 0.45 14.7 
13.7 

4.5 cm/yr 
3.8 cm/yr 

10.8 cm/yr 
3.5 cm/yr 

140% 
-7.9% 

-2.8 
-1.8 

-2.5 
-1.9 

+0.3 
-0.1 

 

Table 6: Published Randomized Trials Of Recombinant Human Growth Hormone On Linear Growth In Children With Inflammatory Bowel Disease 

RCT: randomized controlled trial; yrs; years; rhGH: recombinant human growth hormone;Ctrl: control; mg: milligram; kg: kilogram; wk: week; cm; centimetre; HV: height 
velocity; Ht: height; SDS: standard deviation score; SD: standard deviation 

 



  
No patients 

 
Age at assessment  

 

 
Adult height result 

 
Deviation from mid-parental height 

 
Hauesler et al 
(1994) 388 

 

 
139 

 
19 yrs 

 
Males 173 cm (25th centile) 

Females 161.5 cm (25th centile) 
 

 
ND 

Morrison et al 
(1997) 403 

  

1604 males 
1452 females 

20 yrs Males Ht SDS -0.7 
Females Ht SDS -0.9 

ND 

Lai et al (1999) 
399 

 

30 Males 19 yrs 
Females 17 yrs 

 

Males Ht SDS -1.2 
Females Ht SDS -0.1 

48% below MPH 

Aswani et al 
(2003) 400 

 

US: 27349 males, 23797 females 
Canada: 4315 males, 3816 females 

≥ 25 yrs 25th centile ND 

Assael et al 
(2009) 401 

112 “mild disease” 
112 “ severe disease” 

 

> 20 ys “Mild disease “ males 172.4 cm 
“Mild disease” female  161.3 cm 
“Severe disease” males 171.1 cm 

“Severe disease” females 160.1 cm 
 

ND 

Boumez et al 
(2012) 379 

 

398 males 
331 females 

19 yrs Males Ht SDS -0.7 
Females Ht SDS -0.5 

ND 

Djik et al 
(2011) 402 

 

38 clinical diagnosis 
41 neonatal screening 

18 yrs Clinical diagnosis -1.2 
Neonatal screening -0.2 

ND 

Zhang et al 
(2013) 4 

 

1862 
(269 with parental height) 

21 yrs 160 cm (28th centile) MPH 53d centile 

 

Table 7: Published Studies Of Adult Height In Childhood Onset Cystic Fibrosis 

CF: cystic fibrosis; Ht: height; cm: centimeter; SDS: standard deviation score; ND: no details; MPH: mid-parental height 

 



                           
Study design 

 
No patients 

 
Duration 

(yrs) 

 
rhGH dose 
(mg/kg/wk) 

 
Age 

baseline 
(yrs) 

 
HV baseline 

 

 
HV follow-up  

 
% change 

HV 

 
Ht SDS 
baseline 

 
Ht SDS 

follow-up 

 
Change 
Ht SDS 

 
 
Huseman et 
al (1996) 420 

 

 
Prospective 

 
9 

 
1.0 

 
0.30 

 
7.0 

 
5.7 cm/yr 

 
7.8cm/yr 

 
37% 

 
-1.3 

 
-0.8 

 
+0.5 

Hardin et al 
(1997) 417 

 

Retrospective 24 1.0-2.0 0.29 10.3 3.7 cm/yr 7.8 cm/yr (1st yr) 
6.5 cm/yr (2nd yr) 

111% 
76% 

-3.2 - - 

Alemzadeh et 
al (1998) 419 

 

Prospective 15 2.0 0.35 3.2 - - - -2.8 -0.9 +1.9 

Hardin et al 
(1998) 419 

 

Prospective 9 1.0 0.35 5.4-12.2 5.6 cm/yr 8.0 cm/yr 43% -1.9 -1.3 +0.6 

Sackey et al 
(1998) 421 

 

Prospective 7 1.0 0.16 7.9 0.3 cm/yr 4.1 cm/yr (0.5 yrs) 1141% - - - 

Hardin et al 
(2005) 416 

 

Retrospective 13 rhGH 
12 historical Ctrl 

1.0 0.30 13.8 
14.3 

5.1 cm/yr 
5.0 cm/yr 

8.0 cm/yr 
5.0 cm/yr 

57% 
0% 

-1.9 
-1.9 

- - 

 

Table 8: Published Non-Randomized Studies Of Recombinant Human Growth Hormone On Linear Growth In Children With Cystic 
Fibrosis 

yrs; years; rhGH: recombinant human growth hormone;Ctrl: control; mg: milligram; kg: kilogram; wk: week; cm; centimetre; HV: height velocity; Ht: height; SDS: standard 
deviation score 

 



                           
Study design 

 
No patients 

 
Duration 

(yrs) 

 
rhGH dose 
(mg/kg/wk) 

 
Age 

baseline 
(yrs) 

 
HV baseline 

 

 
HV follow-up  

 
% change 

HV 

 
Ht SDS 
baseline 

 
Ht SDS 

follow-up 

 
Change 
Ht SDS 

 
 
Hardin D et 
al (2001) 423 

 

 
RCT 

 
10 rhGH 

9 Ctrl 

 
1.0 

 
0.30 

 
10.2 
11.4 

 
3.9 cm/yr 
4.0 cm/yr 

 
8.0 cm/yr 
4.0cm/yr 

 
105% 

0% 

 
-0.5 
-0.6 

 
-0.3 
-0.9 

 
+0.2 
-0.3 

Hutler et al 
(2002) 426 
 

RCT 6 rhGH 
4 Ctrl 

0.5 0.27-0.35 12.1 - 9. cm/yr 
5.4 cm/yr 

- 139 cm 
139cm 

141.1 cm 
143.3 cm 

- 

Hardin et al 
(2005) 427 

 

RCT 9 rhGH 
9 Ctrl 

1.0 0.30 11.6 
11.1 

- 8.0 cm/yr 
3.8 cm/yr 

- -1.7 
-1.7 

-1.1 
-1.7 

+0.6 
0.0 

Hardin et al 
(2006) 424 

 

RCT 32 rhGH 
29 Ctrl 

1.0 0.30 10.3 
9.7 

- 8.0 cm/yr 
5.0 cm/yr 

- -1.8 
-1.9 

- - 

Schnabel et al 
(2007) 425 

 

RCT 20 high dose 
22 low dose 

21 Ctrl (placebo) 
 

0.5 0.49 
0.27 

14.3 
13.8 
14.6 

- 6.8 cm/yr 
5.6 cm/yr 
3.8 cm/yr 

- -2.1 
-1.8 
-2.5 

- - 

Stalvey et al 
(2012) 422 

 

RCT 36 rhGH 
32 Ctrl 

1.0 0.30 9.4 
9.4 

- 8.2 cm/yr 
5.3 cm/yr 

- -1.8 
-1.9 

-1.4 
-1.9 

+0.4 
0.0 

 

Table 9: Published Randomized Trials Of Recombinant Human Growth Hormone On Linear Growth In Children With Cystic Fibrosis 

yrs; years; rhGH: recombinant human growth hormone;Ctrl: control; mg: milligram; kg: kilogram; wk: week; cm; centimetre; HV: height velocity; Ht: height; SDS: standard 
deviation score 

 


