30 research outputs found

    A Pilot Study of Dietary Nitrate Supplementation in Anaemic Patients.

    Get PDF
    Conference poster presented at Clinical Trials Symposium, RD&E 5/11/15.Anaemia affects 60-90% of people with cancer. A lower haemoglobin (Hb) is associated with a worse quality of life. Erythropoietin treatment improves both Hb and quality of life but is associated with significant risk. Blood transfusions improve Hb but only have a short-term effect on quality of life. Stored blood has a reduced NO bioavailability causing reduced vasodilation, reduced blood flow and oxygen delivery to muscles, and reduced exercise tolerance and muscle oxidative function. Dietary nitrate supplementation has been shown to be of significant benefit in healthy individuals. It improves mitochondrial efficiency, reduces metabolic rate, increases blood flow to areas of the body requiring more oxygen, and reduces the effect of hypoxia on exercise capacity and muscle recovery.Research funded by Exeter Leukaemia Fund, Royal Devon & Exeter NHS Foundation Trust and the University of Exeter

    Altered cellular redox homeostasis and redox responses under standard oxygen cell culture conditions versus physioxia.

    Get PDF
    In vivo, mammalian cells reside in an environment of 0.5-10% O2 (depending on the tissue location within the body), whilst standard in vitro cell culture is carried out under room air. Little is known about the effects of this hyperoxic environment on treatment-induced oxidative stress, relative to a physiological oxygen environment. In the present study we investigated the effects of long-term culture under hyperoxia (air) on photodynamic treatment. Upon photodynamic irradiation, cells which had been cultured long-term under hyperoxia generated higher concentrations of mitochondrial reactive oxygen species, compared with cells in a physioxic (2% O2) environment. However, there was no significant difference in viability between hyperoxic and physioxic cells. The expression of genes encoding key redox homeostasis proteins and the activity of key antioxidant enzymes was significantly higher after the long-term culture of hyperoxic cells compared with physioxic cells. The induction of antioxidant genes and increased antioxidant enzyme activity appear to contribute to the development of a phenotype that is resistant to oxidative stress-induced cellular damage and death when using standard cell culture conditions. The results from experiments using selective inhibitors suggested that the thioredoxin antioxidant system contributes to this phenotype. To avoid artefactual results, in vitro cellular responses should be studied in mammalian cells that have been cultured under physioxia. This investigation provides new insights into the effects of physioxic cell culture on a model of a clinically relevant photodynamic treatment and the associated cellular pathways

    Clinical relevance of biomarkers of oxidative stress

    Get PDF
    SIGNIFICANCE Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. Recent Advances: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. CRITICAL ISSUES The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use. FUTURE DIRECTIONS Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker. Antioxid. Redox Signal. 00, 000-000

    Clinical practice guideline monitoring children and young people with, or at risk of developing autosomal dominant polycystic kidney disease (ADPKD).

    Get PDF
    Autosomal Dominant Polycystic Kidney Disease (ADPKD) is thought to affect about 1 in 1000 people in the UK. ADPKD causes a progressive decline in kidney function, with kidney failure tending to occur in middle age. Children and young people with ADPKD may not have any symptoms. However they may have high blood pressure, which may accelerate progression to later stages of chronic kidney disease.There is uncertainty and variation in how health professionals manage children and young people with confirmed or a family history of ADPKD, because of a lack of evidence. For example, health professionals may be unsure about when to test children's blood pressure and how often to monitor it in the hospital clinic or at the GP. They may have different approaches in recommending scanning or genetic testing for ADPKD in childhood, with some recommending waiting until the young person is mature enough to make this decision his or herself.This guideline is intended to help families affected by ADPKD by making sure that: health professionals with specialist knowledge in ADPKD offer you information on inheritance and potential benefits and harms of testing for ADPKD. the decision to test and the method of testing for ADPKD in children and young people is shared between you or your family and the health professionals blood pressure assessment is undertaken regularly in children and young people at risk of developing ADPKD

    Dietary antioxidants protect gut epithelial cells from oxidant-induced apoptosis

    Get PDF
    BACKGROUND: The potential of ascorbic acid and two botanical decoctions, green tea and cat's claw, to limit cell death in response to oxidants were evaluated in vitro. METHODS: Cultured human gastric epithelial cells (AGS) or murine small intestinal epithelial cells (IEC-18) were exposed to oxidants – DPPH (3 μM), H(2)O(2) (50 μM), peroxynitrite (300 μM) – followed by incubation for 24 hours, with antioxidants (10 μg/ml) administered as a 1 hour pretreatment. Cell number (MTT assay) and death via apoptosis or necrosis (ELISA, LDH release) was determined. The direct interactions between antioxidants and DPPH (100 μM) or H(2)O(2) (50 μM) were evaluated by spectroscopy. RESULTS: The decoctions did not interact with H(2)O(2), but quenched DPPH although less effectively than vitamin C. In contrast, vitamin C was significantly less effective in protecting human gastric epithelial cells (AGS) from apoptosis induced by DPPH, peroxynitrite and H(2)O(2) (P < 0.001). Green tea and cat's claw were equally protective against peroxynitrite and H(2)O(2), but green tea was more effective than cat's claw in reducing DPPH-induced apoptosis (P < 0.01). Necrotic cell death was marginally evident at these low concentrations of peroxynitrite and H(2)O(2), and was attenuated both by cat's claw and green tea (P < 0.01). In IEC-18 cells, all antioxidants were equally effective as anti-apoptotic agents. CONCLUSIONS: These results indicate that dietary antioxidants can limit epithelial cell death in response to oxidant stress. In the case of green tea and cat's claw, the cytoprotective response exceed their inherent ability to interact with the injurious oxidant, suggestive of actions on intracellular pathways regulating cell death

    A novel hybrid promoter responsive to pathophysiological and pharmacological regulation

    Get PDF
    The aim of this study was to construct a promoter containing DNA motifs for an endogenous transcription factor associated with inflammation along with motifs for pharmacological regulation factors. We demonstrate in transfected cells that expression of a gene of interest is induced by hypoxic conditions or through pharmacological induction, and also show pharmacological repression. In vivo studies utilised electroporation of plasmid to mouse paws, a delivery method shown to be effective by bioluminescence imaging. For gene therapy, the promoter was used to drive expression of IL-1Ra in a paw inflammation model with therapeutic effect observed which was further enhanced when the promoter was additionally induced with a pharmacological activator. One of the most important observations from this study was that promoter induction by hypoxia or inflammation could be prevented by the pharmacological repressor in the absence of doxycycline. These studies demonstrate that hybrid promoters enable pharmacological adjustment to the pathophysiological level of gene expression and, importantly, that they allow termination of gene expression even in the presence of pathophysiological stimuli

    DNAAF1 links heart laterality with the AAA+ ATPase RUVBL1 and ciliary intraflagellar transport

    Get PDF
    DNAAF1 (LRRC50) is a cytoplasmic protein required for dynein heavy chain assembly and cilia motility, and DNAAF1 mutations cause primary ciliary dyskinesia (PCD; MIM 613193). We describe four families with DNAAF1 mutations and complex congenital heart disease (CHD). In three families, all affected individuals have typical PCD phenotypes. However, an additional family demonstrates isolated CHD (heterotaxy) in two affected siblings, but no clinical evidence of PCD. We identified a homozygous DNAAF1 missense mutation, p.Leu191Phe, as causative for heterotaxy in this family. Genetic complementation in dnaaf1-null zebrafish embryos demonstrated the rescue of normal heart looping with wild-type human DNAAF1, but not the p.Leu191Phe variant, supporting the conserved pathogenicity of this DNAAF1 missense mutation. This observation points to a phenotypic continuum between CHD and PCD, providing new insights into the pathogenesis of isolated CHD. In further investigations of the function of DNAAF1 in dynein arm assembly, we identified interactions with members of a putative dynein arm assembly complex. These include the ciliary intraflagellar transport protein IFT88 and the AAA+ (ATPases Associated with various cellular Activities) family proteins RUVBL1 (Pontin) and RUVBL2 (Reptin). Co-localization studies support these findings, with the loss of RUVBL1 perturbing the co-localization of DNAAF1 with IFT88. We show that RUVBL1 orthologues have an asymmetric left-sided distribution at both the mouse embryonic node and the Kupffer’s vesicle in zebrafish embryos, with the latter asymmetry dependent on DNAAF1. These results suggest that DNAAF1-RUVBL1 biochemical and genetic interactions have a novel functional role in symmetry breaking and cardiac development

    Rheumatoid arthritis - treatment: 180. Utility of Body Weight Classified Low-Dose Leflunomide in Japanese Rheumatoid Arthritis

    Get PDF
    Background: In Japan, more than 20 rheumatoid arthritis (RA) patients died of interstitial pneumonia (IP) caused by leflunomide (LEF) were reported, but many of them were considered as the victims of opportunistic infection currently. In this paper, efficacy and safety of low-dose LEF classified by body weight (BW) were studied. Methods: Fifty-nine RA patients were started to administrate LEF from July 2007 to July 2009. Among them, 25 patients were excluded because of the combination with tacrolimus, and medication modification within 3 months before LEF. Remaining 34 RA patients administered 20 to 50 mg/week of LEF were followed up for 1 year and enrolled in this study. Dose of LEF was classified by BW (50 mg/week for over 50 kg, 40 mg/week for 40 to 50 kg and 20 to 30 mg/week for under 40 kg). The average age and RA duration of enrolled patients were 55.5 years old and 10.2 years. Prednisolone (PSL), methotrexate (MTX) and etanercept were used in 23, 28 and 2 patients, respectively. In case of insufficient response or adverse effect, dosage change or discontinuance of LEF were considered. Failure was defined as dosages up of PSL and MTX, or dosages down or discontinuance of LEF. Last observation carried forward method was used for the evaluation of failed patients at 1 year. Results: At 1 year after LEF start, good/ moderate/ no response assessed by the European League Against Rheumatism (EULAR) response criteria using Disease Activity Score, including a 28-joint count (DAS28)-C reactive protein (CRP) were showed in 14/ 10/ 10 patients, respectively. The dosage changes of LEF at 1 year were dosage up: 10, same dosage: 5, dosage down: 8 and discontinuance: 11 patients. The survival rate of patients in this study was 23.5% (24 patients failed) but actual LEF continuous rate was 67.6% (11 patients discontinued) at 1 year. The major reason of failure was liver dysfunction, and pneumocystis pneumonia was occurred in 1 patient resulted in full recovery. One patient died of sepsis caused by decubitus ulcer infection. DAS28-CRP score was decreased from 3.9 to 2.7 significantly. Although CRP was decreased from 1.50 to 0.93 mg/dl, it wasn't significant. Matrix metalloproteinase (MMP)-3 was decreased from 220.0 to 174.2 ng/ml significantly. Glutamate pyruvate transaminase (GPT) was increased from 19 to 35 U/l and number of leukocyte was decreased from 7832 to 6271 significantly. DAS28-CRP, CRP, and MMP-3 were improved significantly with MTX, although they weren't without MTX. Increase of GPT and leukopenia were seen significantly with MTX, although they weren't without MTX. Conclusions: It was reported that the risks of IP caused by LEF in Japanese RA patients were past IP history, loading dose administration and low BW. Addition of low-dose LEF is a potent safe alternative for the patients showing unsatisfactory response to current medicines, but need to pay attention for liver function and infection caused by leukopenia, especially with MTX. Disclosure statement: The authors have declared no conflicts of interes

    Effects of rare kidney diseases on kidney failure: a longitudinal analysis of the UK National Registry of Rare Kidney Diseases (RaDaR) cohort

    Get PDF
    \ua9 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Individuals with rare kidney diseases account for 5–10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure. Methods: People aged 0–96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan–Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1\ub773 m2 or more to first eGFR of less than 30 mL/min per 1\ub773 m2 (the therapeutic trial window). Findings: Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9\ub76 years (IQR 5\ub79–16\ub77). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2\ub781 million UK patients with all-cause chronic kidney disease (28% vs 1%; p&lt;0\ub70001), but better survival rates (standardised mortality ratio 0\ub742 [95% CI 0\ub732–0\ub752]; p&lt;0\ub70001). Median age at kidney failure, median age at death, time from start of dialysis to death, time from diagnosis to eGFR thresholds, and therapeutic trial window all varied substantially between rare diseases. Interpretation: Patients with rare kidney diseases differ from the general population of individuals with chronic kidney disease: they have higher 5-year rates of kidney failure but higher survival than other patients with chronic kidney disease stages 3–5, and so are over-represented in the cohort of patients requiring kidney replacement therapy. Addressing unmet therapeutic need for patients with rare kidney diseases could have a large beneficial effect on long-term kidney replacement therapy demand. Funding: RaDaR is funded by the Medical Research Council, Kidney Research UK, Kidney Care UK, and the Polycystic Kidney Disease Charity

    Effects of rare kidney diseases on kidney failure: a longitudinal analysis of the UK National Registry of Rare Kidney Diseases (RaDaR) cohort

    Get PDF
    Background Individuals with rare kidney diseases account for 5–10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure. Methods People aged 0–96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan–Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1·73 m2 or more to first eGFR of less than 30 mL/min per 1·73 m2 (the therapeutic trial window). Findings Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9·6 years (IQR 5·9–16·7). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2·81 million UK patients with all-cause chronic kidney disease (28% vs 1%; p<0·0001), but better survival rates (standardised mortality ratio 0·42 [95% CI 0·32–0·52]; p<0·0001). Median age at kidney failure, median age at death, time from start of dialysis to death, time from diagnosis to eGFR thresholds, and therapeutic trial window all varied substantially between rare diseases. Interpretation Patients with rare kidney diseases differ from the general population of individuals with chronic kidney disease: they have higher 5-year rates of kidney failure but higher survival than other patients with chronic kidney disease stages 3–5, and so are over-represented in the cohort of patients requiring kidney replacement therapy. Addressing unmet therapeutic need for patients with rare kidney diseases could have a large beneficial effect on long-term kidney replacement therapy demand. Funding RaDaR is funded by the Medical Research Council, Kidney Research UK, Kidney Care UK, and the Polycystic Kidney Disease Charity
    corecore