88 research outputs found

    Changes in the Frontotemporal Cortex and Cognitive Correlates in First-Episode Psychosis

    Get PDF
    Background: Loss of cortical volume in frontotemporal regions has been reported in patients with schizophrenia and their relatives. Cortical area and thickness are determined by different genetic processes, and measuring these parameters separately may clarify disturbances in corticogenesis relevant to schizophrenia. Our study also explored clinical and cognitive correlates of these parameters.Methods: Thirty-seven patients with first-episode psychosis (34 schizophrenia, 3 schizoaffective disorder) and 38 healthy control subjects matched for age and sex took part in the study. Imaging was performed on an magnetic resonance imaging 1.5-T scanner. Area and thickness of the frontotemporal cortex were measured using a surface-based morphometry method (Freesurfer). All subjects underwent neuropsychologic testing that included measures of premorbid and current IQ, working and verbal memory, and executive function.Results: Reductions in cortical area, more marked in the temporal cortex, were present in patients. Overall frontotemporal cortical thickness did not differ between groups, although regional thinning of the right superior temporal region was observed in patients. There was a significant association of both premorbid IQ and IQ at disease onset with area, but not thickness, of the frontotemporal cortex, and working memory span was associated with area of the frontal cortex. These associations remained significant when only patients with schizophrenia were considered.Conclusions: Our results suggest an early disruption of corticogenesis in schizophrenia, although the effect of subsequent environmental factors cannot be excluded. In addition, cortical abnormalities are subject to regional variations and differ from those present in neurodegenerative diseases

    The Earth: Plasma Sources, Losses, and Transport Processes

    Get PDF
    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed

    The ELFIN mission

    Get PDF
    The Electron Loss and Fields Investigation with a Spatio-Temporal Ambiguity-Resolving option (ELFIN-STAR, or heretoforth simply: ELFIN) mission comprises two identical 3-Unit (3U) CubeSats on a polar (∼93∘ inclination), nearly circular, low-Earth (∼450 km altitude) orbit. Launched on September 15, 2018, ELFIN is expected to have a >2.5 year lifetime. Its primary science objective is to resolve the mechanism of storm-time relativistic electron precipitation, for which electromagnetic ion cyclotron (EMIC) waves are a prime candidate. From its ionospheric vantage point, ELFIN uses its unique pitch-angle-resolving capability to determine whether measured relativistic electron pitch-angle and energy spectra within the loss cone bear the characteristic signatures of scattering by EMIC waves or whether such scattering may be due to other processes. Pairing identical ELFIN satellites with slowly-variable along-track separation allows disambiguation of spatial and temporal evolution of the precipitation over minutes-to-tens-of-minutes timescales, faster than the orbit period of a single low-altitude satellite (Torbit ∼ 90 min). Each satellite carries an energetic particle detector for electrons (EPDE) that measures 50 keV to 5 MeV electrons with Δ E/E 1 MeV. This broad energy range of precipitation indicates that multiple waves are providing scattering concurrently. Many observed events show significant backscattered fluxes, which in the past were hard to resolve by equatorial spacecraft or non-pitch-angle-resolving ionospheric missions. These observations suggest that the ionosphere plays a significant role in modifying magnetospheric electron fluxes and wave-particle interactions. Routine data captures starting in February 2020 and lasting for at least another year, approximately the remainder of the mission lifetime, are expected to provide a very rich dataset to address questions even beyond the primary mission science objective.Published versio

    Psicopatologia descritiva: aspectos históricos e conceituais

    Full text link

    Programming

    No full text

    Analysis of bHLH and MYB-domain proteins: species-specific regulatory differences caused by divergent evolution of target anthocyanin genes

    No full text
    The regulatory anthocyanin loci, an1, an2, an4 and an11 of Petunia hybrida, and r and c1 from Zea mays, control transcription of different sets of target genes. Both an2 and c1 encode a MYB-type protein. This study reports the isolation of a P. hybrida gene, jaf13, encoding a basic helix-loop-helix protein that, on the basis of sequence homology and intron/exon structure, represents the P. hybrida orthologue of the Z. mays r genes. Ectopic expression of an2 and jaf13 is sufficient for activation of the dihydroflavonol 4-reductase-A (dfrA) promoter and enhanced pigment accumulation in P. hybrida. This indicates that an2 and jaf13 play a key role in determining the tissue-specific expression pattern of structural genes. However, because chalcone synthase (chs) and flavanone-3-hydroxylase (f3h) are not activated, the pattern of pigmentation is not fundamentally altered. Expression of an2 in Z. mays complements a mutation in pl, a c1 paralogue, indicating that an2 activates a wider set of target genes in this host. Transient expression assays in Z. mays and P. hybrida tissues showed that C1 and R or AN2 and JAF13 can activate the promoter of the c2 gene, encoding Z. mays CHS, but not the chsA promoter from P. hybrida. These results indicate that regulatory anthocyanin genes are conserved between species and that divergent evolution of the target gene promoters is responsible for the species-specific differences in regulatory networks
    • …
    corecore