85 research outputs found

    Changes in the Adult GluN2B Associated Proteome following Adolescent Intermittent Ethanol Exposure

    Get PDF
    Adolescent alcohol use is the strongest predictor for alcohol use disorders. In rodents, adolescents have distinct responses to acute ethanol, and prolonged alcohol exposure during adolescence can maintain these phenotypes into adulthood. One brain region that is particularly sensitive to the effects of both acute and chronic ethanol exposure is the hippocampus. Adolescent intermittent ethanol exposure (AIE) produces long lasting changes in hippocampal synaptic plasticity and dendritic morphology, as well as in the susceptibility to acute ethanol-induced spatial memory impairment. Given the pattern of changes in hippocampal structure and function, one potential target for these effects is the ethanol sensitive GluN2B subunit of the NMDA receptor, which is known to be involved in synaptic plasticity and dendritic morphology. Thus we sought to determine if there were persistent changes in hippocampal GluN2B signaling cascades following AIE. We employed a previously validated GluN2B-targeted proteomic strategy that was used to identify novel signaling mechanisms altered by chronic ethanol exposure in the adult hippocampus. We collected adult hippocampal tissue (P70) from rats that had been given 2 weeks of AIE from P30-45. Tissue extracts were fractionated into synaptic and non-synaptic pools, immuno-precipitated for GluN2B, and then analyzed using proteomic methods. We detected a large number of proteins associated with GluN2B. AIE produced significant changes in the association of many proteins with GluN2B in both synaptic and non-synaptic fractions. Intriguingly the number of proteins changed in the non-synaptic fraction was double that found in the synaptic fraction. Some of these proteins include those involved in glutamate signaling cytoskeleton rearrangement, calcium signaling, and plasticity. Disruptions in these pathways may contribute to the persistent cellular and behavioral changes found in the adult hippocampus following AIE. Further, the robust change in non-synaptic proteins suggests that AIE may prime this signaling pathway for future ethanol exposures in adulthood

    Gender Disparities in Alcohol Use Disorder Treatment Among Privately Insured Patients with Alcohol‐Associated Cirrhosis

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147837/1/acer13944_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147837/2/acer13944.pd

    Rapid and high throughput molecular identification of diverse mosquito species by igh resolution melting analysis

    Get PDF
    Mosquitoes are a diverse group of invertebrates, with members that are among the most important vectors of diseases. The correct identification of mosquitoes is paramount to the control of the diseases that they transmit. However, morphological techniques depend on the quality of the specimen and often unavailable taxonomic expertise, which may still not be able to distinguish mosquitoes among species complexes (sibling and cryptic species). High resolution melting (HRM) analyses, a closed-tube, post-polymerase chain reaction (PCR) method used to identify variations in nucleic acid sequences, has been used to differentiate species within the Anopheles gambiae and Culex pipiens complexes. We validated the use of PCR-HRM analyses to differentiate species within Anopheles and within each of six genera of culicine mosquitoes, comparing primers targeting cytochrome b (cyt b), NADH dehydrogenase subunit 1 (ND1), intergenic spacer region (IGS) and cytochrome c oxidase subunit 1 (COI) gene regions. HRM analyses of amplicons from all the six primer pairs successfully differentiated two or more mosquito species within one or more genera (Aedes (Ae. vittatus from Ae. metallicus), Culex (Cx. tenagius from Cx. antennatus, Cx. neavei from Cx. duttoni, cryptic Cx. pipiens species), Anopheles (An. gambiae s.s. from An. arabiensis) and Mansonia (Ma. africana from Ma. uniformis)) based on their HRM profiles. However, PCR-HRM could not distinguish between species within Aedeomyia (Ad. africana and Ad. furfurea), Mimomyia (Mi. hispida and Mi. splendens) and Coquillettidia (Cq. aurites, Cq. chrysosoma, Cq. fuscopennata, Cq. metallica, Cq. microannulatus, Cq. pseudoconopas and Cq. versicolor) genera using any of the primers. The IGS and COI barcode region primers gave the best and most definitive separation of mosquito species among anopheline and culicine mosquito genera, respectively, while the other markers may serve to confirm identifications of closely related sub-species. This approach can be employed for rapid identification of mosquitoes

    Gain-of-Function R225W Mutation in Human AMPKγ3 Causing Increased Glycogen and Decreased Triglyceride in Skeletal Muscle

    Get PDF
    BACKGROUND: AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that is evolutionarily conserved from yeast to mammals and functions to maintain cellular and whole body energy homeostasis. Studies in experimental animals demonstrate that activation of AMPK in skeletal muscle protects against insulin resistance, type 2 diabetes and obesity. The regulatory gamma(3) subunit of AMPK is expressed exclusively in skeletal muscle; however, its importance in controlling overall AMPK activity is unknown. While evidence is emerging that gamma subunit mutations interfere specifically with AMP activation, there remains some controversy regarding the impact of gamma subunit mutations. Here we report the first gain-of-function mutation in the muscle-specific regulatory gamma(3) subunit in humans. METHODS AND FINDINGS: We sequenced the exons and splice junctions of the AMPK gamma(3) gene (PRKAG3) in 761 obese and 759 lean individuals, identifying 87 sequence variants including a novel R225W mutation in subjects from two unrelated families. The gamma(3) R225W mutation is homologous in location to the gamma(2)R302Q mutation in patients with Wolf-Parkinson-White syndrome and to the gamma(3)R225Q mutation originally linked to an increase in muscle glycogen content in purebred Hampshire Rendement Napole (RN-) pigs. We demonstrate in differentiated muscle satellite cells obtained from the vastus lateralis of R225W carriers that the mutation is associated with an approximate doubling of both basal and AMP-activated AMPK activities. Moreover, subjects bearing the R225W mutation exhibit a approximately 90% increase of skeletal muscle glycogen content and a approximately 30% decrease in intramuscular triglyceride (IMTG). CONCLUSIONS: We have identified for the first time a mutation in the skeletal muscle-specific regulatory gamma(3) subunit of AMPK in humans. The gamma(3)R225W mutation has significant functional effects as demonstrated by increases in basal and AMP-activated AMPK activities, increased muscle glycogen and decreased IMTG. Overall, these findings are consistent with an important regulatory role for AMPK gamma(3) in human muscle energy metabolism

    Planck early results III : First assessment of the Low Frequency Instrument in-flight performance

    Get PDF
    Peer reviewe

    Climate change and freshwater zooplankton: what does it boil down to?

    Get PDF
    Recently, major advances in the climate–zooplankton interface have been made some of which appeared to receive much attention in a broader audience of ecologists as well. In contrast to the marine realm, however, we still lack a more holistic summary of recent knowledge in freshwater. We discuss climate change-related variation in physical and biological attributes of lakes and running waters, high-order ecological functions, and subsequent alteration in zooplankton abundance, phenology, distribution, body size, community structure, life history parameters, and behavior by focusing on community level responses. The adequacy of large-scale climatic indices in ecology has received considerable support and provided a framework for the interpretation of community and species level responses in freshwater zooplankton. Modeling perspectives deserve particular consideration, since this promising stream of ecology is of particular applicability in climate change research owing to the inherently predictive nature of this field. In the future, ecologists should expand their research on species beyond daphnids, should address questions as to how different intrinsic and extrinsic drivers interact, should move beyond correlative approaches toward more mechanistic explanations, and last but not least, should facilitate transfer of biological data both across space and time

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Optically stimulated luminescence dating as a geochronological tool for late quaternary sediments in the Red Sea region

    Get PDF
    This chapter concerns the use of luminescence methods as geochronological tools for dating Late Quaternary sediments in the Red Sea region. The dating methods all use stimulated luminescence to register signals developed in mineral systems in response to long term exposure to ionising radiation in the environment. The principles of luminescence dating are outlined followed by discussion of its application to the Arabian Peninsula, where, particularly in SE Arabia and parts of the interior, a growing corpus of work is emerging, which is helping to define past arid or humid periods of importance to palaeoclimatology and to archaeology. Turning to the Red Sea, studies conducted within the DISPERSE project are presented both in marine and terrestrial settings. The motivation for much of this work concerns definition of the environmental conditions and chronologies for hominin and human dispersion through Arabia. Data are presented which identify, for the first time, late Pleistocene evidence on the inner continental shelf near the Farasan Islands, using material from the 2013 cruise of RV AEGAEO . Results are also presented from the littoral fringe of southwest Saudi Arabia, identifying units associated with MIS5 which have palaeo-environmental and archaeological significance. It is to be hoped that further research in coming decades will continue to extend the regional chronology for the littoral fringe of the Red Sea. In this respect luminescence dating has potential to help define the environmental history of this important area, to assist with assigning marine and terrestrial features into unique stages of Quaternary climate cycles, and to promote better understanding of human-environment interactions in this dynamic area

    ADP is the Dominant Controller of AMPactivated Protein Kinase Activity Dynamics in Skeletal Muscle during Exercise

    Get PDF
    Exercise training elicits profound metabolic adaptations in skeletal muscle cells. A key molecule in coordinating these adaptations is AMP-activated protein kinase (AMPK), whose activity increases in response to cellular energy demand. AMPK activity dynamics are primarily controlled by the adenine nucleotides ADP and AMP, but how each contributes to its control in skeletal muscle during exercise is unclear. We developed and validated a mathematical model of AMPK signaling dynamics, and then applied global parameter sensitivity analyses with data-informed constraints to predict that AMPK activity dynamics are determined principally by ADP and not AMP. We then used the model to predict the effects of two additional direct-binding activators of AMPK, ZMP and Compound 991, further validating the model and demonstrating its applicability to understanding AMPK pharmacology. The relative effects of direct-binding activators can be understood in terms of four properties, namely their concentrations, binding affinities for AMPK, abilities to enhance AMPK phosphorylation, and the magnitudes of their allosteric activation of AMPK. Despite AMP’s favorable values in three of these four properties, ADP is the dominant controller of AMPK activity dynamics in skeletal muscle during exercise by virtue of its higher concentration compared to that of AMP
    corecore