39 research outputs found

    Electrodeposition of MoS2 for Charge Storage in Electrochemical Supercapacitors

    Get PDF
    Mo sulfide thin films were cathodically electrodeposited onto glassy carbon electrodes (GCE) from aqueous electrolytes containing 10 mM (NH4)2MoS4 and 0.2 M KCl. Film adhesion was adequate only for electrodes pretreated by potential cycling in 1.0 M HNO3 and 0.1 M NaF to enhance the surface roughness and partially oxidize the GCE. Previous studies report direct cathodic electrodeposition of MoS2, but energy dispersive x-ray spectroscopy and x-ray diffraction suggest that the as-deposited film is closer in stoichiometry to MoS3, which can be converted to MoS2 by annealing in Ar at 600°C for one hour. The charge storage capability of electrodeposited Mo sulfide films is studied here for the first time in 1.0 M Na2SO4 over the thickness range 50 nm to 5 µm, and before and after high temperature annealing. The highest capacitance is obtained for 50 nm thick MoS2 films is 330 F/g measured by galvanostatic charge discharge at 0.75 A/g, and 360 F/g measured by cyclic voltammetry at 10 mV/sec. The capacitance per unit mass decreases with increasing film thickness due to reduced electrochemical accessibility. MoS2 film formed by high temperature annealing in Ar have a charge storage capability about 40x higher than the as-deposited Mo sulfide films

    Qualifications of Candle Filters for Combined Cycle Combustion Applications

    Get PDF
    The direct firing of coal produces particulate matter that has to be removed for environmental and process reasons. In order to increase the current advanced coal combustion processes, under the U.S. Department of Energy's auspices, Siemens Westinghouse Power Corporation (SWPC) has developed ceramic candle filters that can operate at high temperatures. The Coal Research Center of Southern Illinois University (SIUC), in collaboration with SWPC, developed a program for long-term filter testing at the SIUC Steam Plant followed by experiments using a single-filter reactor unit. The objectives of this program funded by the U.S. Department of Energy were to identify and demonstrate the stability of porous candle filter elements for use in high temperature atmospheric fluidized-bed combustion (AFBC) process applications. These verifications were accomplished through extended time slipstream testing of a candle filter array under AFBC conditions using SIUC's existing AFBC boiler. Temperature, mass flow rate, and differential pressure across the filter array were monitored for a duration of 45 days. After test exposure at SIUC, the filter elements were characterized using Scanning Electron Microscopy and BET surface area analyses. In addition, a single-filter reactor was built and utilized to study long term filter operation, the permeability exhibited by a filter element before and after the slipstream test, and the thermal shock resilience of a used filter by observing differential pressure changes upon rapid heating and cooling of the filter. The data acquired during the slipstream test and the post-test evaluations demonstrated the suitability of filter elements in advanced power generation applications

    Removal of non-CO2 greenhouse gases by large-scale atmospheric solar photocatalysis

    Get PDF
    Large-scale atmospheric removal of greenhouse gases (GHGs) including methane, nitrous oxide and ozone-depleting halocarbons could reduce global warming more quickly than atmospheric removal of CO2. Photocatalysis of methane oxidizes it to CO2, effectively reducing its global warming potential (GWP) by at least 90%. Nitrous oxide can be reduced to nitrogen and oxygen by photocatalysis; meanwhile halocarbons can be mineralized by red-ox photocatalytic reactions to acid halides and CO2. Photocatalysis avoids the need for capture and sequestration of these atmospheric components. Here review an unusual hybrid device combining photocatalysis with carbon-free electricity with no-intermittency based on the solar updraft chimney. Then we review experimental evidence regarding photocatalytic transformations of non-CO2 GHGs. We propose to combine TiO2-photocatalysis with solar chimney power plants (SCPPs) to cleanse the atmosphere of non-CO2 GHGs. Worldwide installation of 50,000 SCPPs, each of capacity 200 MW, would generate a cumulative 34 PWh of renewable electricity by 2050, taking into account construction time. These SCPPs equipped with photocatalyst would process 1 atmospheric volume each 14–16 years, reducing or stopping the atmospheric growth rate of the non-CO2 GHGs and progressively reducing their atmospheric concentrations. Removal of methane, as compared to other GHGs, has enhanced efficacy in reducing radiative forcing because it liberates more °OH radicals to accelerate the cleaning of the troposphere. The overall reduction in non-CO2 GHG concentration would help to limit global temperature rise. By physically linking greenhouse gas removal to renewable electricity generation, the hybrid concept would avoid the moral hazard associated with most other climate engineering proposals

    A Kinetic Assessment of Entrained Flow Gasification Modeling

    No full text
    corecore