58 research outputs found

    Improving Perioperative Knowledge and Confidence of Local Anesthetic Systemic Toxicity Management Through Education and Clinical Simulation

    Get PDF
    Local anesthetic systemic toxicity (LAST) is a life-threatening event that can occur after the administration of local anesthetics. Although LAST is a sparsely occurring event, reaction and recognition to the initial signs and symptoms followed by prompt treatment ensure effective, life-saving treatment. Providing perioperative staff with education and simulated LAST scenarios have shown to improve knowledge and confidence in LAST crisis management which translates to better preparedness if ever faced with this crisis. The purpose of this project was to provide clinical anesthesia providers and perioperative nursing staff with LAST education via simulation and case scenarios to improve awareness, confidence, knowledge, and responsiveness to a critical LAST crisis.A mixed-methods design was used to evaluate knowledge and confidence following the education and mock LAST scenario. Results provided information consistent with increased average mean scores of both knowledge and confidence across all categories. Participants’ post-evaluation questionnaires inferred information from the presentation and mock scenario were beneficial to practice and improved baseline knowledge and confidence.The results of this project have shown that knowledge and confidence improved for both RN and anesthesia providers. These findings may provide grounds for practice change for perioperative team members by changing the focus of assessments during local anesthetic administration. It is also recommended from the results of this project to incorporate LAST crisis management training into the new hire orientation program

    NLRP3 (NALP3, Cryopyrin) Facilitates In Vivo Caspase-1 Activation, Necrosis, and HMGB1 Release via Inflammasome-Dependent and -Independent Pathways

    Get PDF
    Bacterial infection elicits a range of beneficial as well as detrimental host inflammatory responses. Key among these responses are macrophage/monocyte necrosis, release of the pro-inflammatory factor high-mobility group box 1 protein (HMGB1), and induction of the cytokine IL-1. While the control of IL-1β has been well-studied, processes that control macrophage cell death and HMGB-1 release in animals are poorly understood. This study utilizes Klebsiella pneumonia as a model organism since it elicits all three responses in vivo. The regulation of these responses is studied in the context of the inflammasome components, NLRP3 and ASC, which are important for caspase-1 activation and IL-1β release. Using a pulmonary infection model that reflects human infection, we show that K. pneumonia-induced mouse macrophage necrosis, HMGB-1 and IL-1β release are dependent on NLRP3 and ASC. K. pneumoniae infection of mice lacking Nlrp3 results in decreased lung inflammation and reduced survival relative to control indicating the overall protective role of this gene. Macrophage/monocyte necrosis and HMGB1 release are controlled independently of caspase-1 suggesting that the former two responses are separable from inflammasome-associated functions. These results provide critical in vivo validation that the physiologic role of NLRP3 and ASC is not limited to inflammasome formation

    Neisseria gonorrhoeae Activates the Proteinase Cathepsin B to Mediate the Signaling Activities of the NLRP3 and ASC-Containing Inflammasome

    Get PDF
    Neisseria gonorrhoeae is a common sexually transmitted pathogen that significantly impacts female fertility, neonatal health, and transmission of HIV worldwide. N. gonorrhoeae usually causes localized inflammation of the urethra and cervix by inducing production of IL-1β and other inflammatory cytokines. Several NLR (Nucleotide binding domain, Leucine Rich Repeat) proteins are implicated in the formation of pro-IL-1β-processing complexes called inflammasomes in response to pathogens. We demonstrate that NLRP3 (cryopyrin,NALP3) is the primary NLR required for IL-1β/IL-18 secretion in response to N. gonorrhoeae in monocytes. We also show that N. gonorrhoeae infection promotes NLRP3-dependent monocytic cell death via pyronecrosis, a recently described pathway with morphological features of necrosis, including release of the strong inflammatory mediator HMBG1. Additionally, N. gonorrhoeae activates the cysteine protease Cathepsin-B as measured by the breakdown of a Cathepsin B substrate. Inhibition of Cathepsin B shows that this protease is an apical controlling step in the downstream activities of NLRP3 including IL-1β production, pyronecrosis, and HMGB1 release. Non-pathogenic Neisseria strains (N. cinerea and N. flavescens) do not activate NLRP3 as robustly as N. gonorrhoeae. Conditioned media from N. gonorrhoeae contains factors capable of initiating the NLRP3 mediated signaling events. Isolated N. gonorrhoeae lipooligosaccharide, a known virulence factor from this bacterium that is elaborated from the bacterium in the form of outer membrane blebs, activates both NLRP3-induced IL-1β secretion and pyronecrosis. Our findings indicate that activation of NLRP3-mediated inflammatory response pathways is an important venue associated with host response and pathogenesis of N. gonorrhoeae

    Microbial Pathogen-Induced Necrotic Cell Death Mediated by the Inflammasome Components CIAS1/Cryopyrin/NLRP3 and ASC

    Get PDF
    Cryopyrin (CIAS1, NLRP3) and ASC are components of the inflammasome, a multiprotein complex required for caspase-1 activation and cytokine IL-1βproduction. CIAS1 mutations underlie autoinflammation characterized by excessive IL-1β secretion. Disease-associated cryopyrin also causes a program of necrosis-like cell death in macrophages, the mechanistic details of which are unknown. We find that patient monocytes carrying disease-associated CIAS1 mutations exhibit excessive necrosis-like death by a process dependent on ASC and cathepsin B, resulting in spillage of the proinflammatory mediator HMGB1. Shigella flexneri infection also causes cryopyrin-dependent macrophage necrosis with features similar to the death caused by mutant CIAS1. This necrotic death is independent of caspase-1 and IL-1β, and thus independent of the inflammasome. Furthermore, necrosis of primary macrophages requires the presence of Shigella virulence genes. While similar proteins mediate pathogen-induced cell death in plants, this report identifies cryopyrin as an important host regulator of programmed pathogen-induced necrosis in animals, a process we term pyronecrosis

    A Yeast Model of FUS/TLS-Dependent Cytotoxicity

    Get PDF
    FUS/TLS is a nucleic acid binding protein that, when mutated, can cause a subset of familial amyotrophic lateral sclerosis (fALS). Although FUS/TLS is normally located predominantly in the nucleus, the pathogenic mutant forms of FUS/TLS traffic to, and form inclusions in, the cytoplasm of affected spinal motor neurons or glia. Here we report a yeast model of human FUS/TLS expression that recapitulates multiple salient features of the pathology of the disease-causing mutant proteins, including nuclear to cytoplasmic translocation, inclusion formation, and cytotoxicity. Protein domain analysis indicates that the carboxyl-terminus of FUS/TLS, where most of the ALS-associated mutations are clustered, is required but not sufficient for the toxicity of the protein. A genome-wide genetic screen using a yeast over-expression library identified five yeast DNA/RNA binding proteins, encoded by the yeast genes ECM32, NAM8, SBP1, SKO1, and VHR1, that rescue the toxicity of human FUS/TLS without changing its expression level, cytoplasmic translocation, or inclusion formation. Furthermore, hUPF1, a human homologue of ECM32, also rescues the toxicity of FUS/TLS in this model, validating the yeast model and implicating a possible insufficiency in RNA processing or the RNA quality control machinery in the mechanism of FUS/TLS mediated toxicity. Examination of the effect of FUS/TLS expression on the decay of selected mRNAs in yeast indicates that the nonsense-mediated decay pathway is probably not the major determinant of either toxicity or suppression.Fidelity Biosciences (Firm)Fidelity Biosciences (Firm) (Research Inititative)ALS Therapy AllianceNational Institutes of Health (U.S.) (NIH 1RC1NS06839)National Institutes of Health (U.S.) (NIH U01NS05225-03)National Institutes of Health (U.S.) (NIH R01NS050557-05)National Institutes of Health (U.S.) (NIH 1RC2NS070342-01)Pierre L. de Bourgknecht ALS Research FoundationNational Science Foundation (U.S.) (NS614192

    Percutaneous transhepatic vs. endoscopic retrograde biliary drainage for suspected malignant hilar obstruction: study protocol for a randomized controlled trial

    Full text link
    Abstract Background The optimal approach to the drainage of malignant obstruction at the liver hilum remains uncertain. We aim to compare percutaneous transhepatic biliary drainage (PTBD) to endoscopic retrograde cholangiography (ERC) as the first intervention in patients with cholestasis due to suspected malignant hilar obstruction (MHO). Methods The INTERCPT trial is a multi-center, comparative effectiveness, randomized, superiority trial of PTBD vs. ERC for decompression of suspected MHO. One hundred and eighty-four eligible patients across medical centers in the United States, who provide informed consent, will be randomly assigned in 1:1 fashion via a web-based electronic randomization system to either ERC or PTBD as the initial drainage and, if indicated, diagnostic procedure. All subsequent clinical interventions, including crossover to the alternative procedure, will be dictated by treating physicians per usual clinical care. Enrolled subjects will be assessed for successful biliary drainage (primary outcome measure), adequate tissue diagnosis, adverse events, the need for additional procedures, hospitalizations, and oncological outcomes over a 6-month follow-up period. Subjects, treating clinicians and outcome assessors will not be blinded. Discussion The INTERCPT trial is designed to determine whether PTBD or ERC is the better initial approach when managing a patient with suspected MHO, a common clinical dilemma that has never been investigated in a randomized trial. Trial registration ClinicalTrials.gov, Identifier: NCT03172832 . Registered on 1 June 2017.https://deepblue.lib.umich.edu/bitstream/2027.42/142379/1/13063_2018_Article_2473.pd

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
    corecore