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Abstract

FUS/TLS is a nucleic acid binding protein that, when mutated, can cause a subset of familial amyotrophic lateral sclerosis
(fALS). Although FUS/TLS is normally located predominantly in the nucleus, the pathogenic mutant forms of FUS/TLS traffic
to, and form inclusions in, the cytoplasm of affected spinal motor neurons or glia. Here we report a yeast model of human
FUS/TLS expression that recapitulates multiple salient features of the pathology of the disease-causing mutant proteins,
including nuclear to cytoplasmic translocation, inclusion formation, and cytotoxicity. Protein domain analysis indicates that
the carboxyl-terminus of FUS/TLS, where most of the ALS-associated mutations are clustered, is required but not sufficient
for the toxicity of the protein. A genome-wide genetic screen using a yeast over-expression library identified five yeast DNA/
RNA binding proteins, encoded by the yeast genes ECM32, NAM8, SBP1, SKO1, and VHR1, that rescue the toxicity of human
FUS/TLS without changing its expression level, cytoplasmic translocation, or inclusion formation. Furthermore, hUPF1, a
human homologue of ECM32, also rescues the toxicity of FUS/TLS in this model, validating the yeast model and implicating
a possible insufficiency in RNA processing or the RNA quality control machinery in the mechanism of FUS/TLS mediated
toxicity. Examination of the effect of FUS/TLS expression on the decay of selected mRNAs in yeast indicates that the
nonsense-mediated decay pathway is probably not the major determinant of either toxicity or suppression.
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Introduction

Amyotrophic lateral sclerosis (ALS, also called Lou Gehrig’s

disease after one of its most famous victims) is a relentlessly

progressive, fatal neurodegenerative disease with a prevalence of

,5 people out of 100,000 each year and an average age of onset of

,60 years. Patients with ALS suffer from degeneration of motor

neurons in the brain and spinal cord, which leads to progressive

muscular weakness. ALS accounts for ,1/300 to 1/400 of all

deaths, which means that about 1,000,000 people now alive in the

United States will develop ALS. Death typically occurs 3–5 years

after disease onset, due to respiratory paralysis. There is no

effective treatment for the disease; the only approved ALS drug

(riluzole) extends the lifespan of some ALS patients by only about 3

months.

While most forms of ALS are sporadic and idiopathic (sALS),

,10% of cases are inherited in a Mendelian fashion and are

designated familial ALS (fALS). As is the case for Parkinson’s and

Alzheimer’s diseases, which also have ,10% familial forms,

genetic analysis has identified several genes that cause fALS. The

first mutations were identified in SOD1, which encodes the

ubiquitously expressed copper/zinc superoxide dismutase; these

variants cause ,20% of fALS worldwide. More than 150 different

ALS mutations, spanning virtually the entire coding sequence of

the highly conserved SOD1 gene, have been identified—nearly all

of them exhibiting autosomal dominant inheritance [1]. Although

inclusions containing aggregated SOD1 protein have been found

in the spinal motor neurons of patients with SOD1-dependent

fALS, they are generally not found in the sporadic disease.

More recently, other genes have been identified that collectively

account for a significant percentage of the remaining fALS cases.

These include the genes coding for alsin (ALS2), vesicle associated

membrane protein B (VAPB) [2], senataxin (SETX) [3], TAR-

DNA-binding protein (TDP-43) [4], fused in sarcoma or
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translocated in liposarcoma (FUS/TLS) [5,6], and optineurin

(OPTN) [7]. A small number of other genes have been associated

with increased risk for sALS, most recently ataxin-2 [8]. Studies of

these genes have provided important information about the

biochemical processes that may underlie ALS. Putative mecha-

nisms of toxicity targeting motor neurons include glutamate

excitotoxicity, oxidative damage, proteasome inhibition, mito-

chondrial dysfunction, ER stress, axonal transport defects, growth

factor signaling deficiency, and glial cell dysfunction [9,10].

Two of the genes associated with fALS, FUS/TLS and TDP-

43, are of special interest because inclusions containing these

proteins have been identified in motor neurons of both sporadic

and familial patients [11–15]. In addition, both of these genes have

been linked to rare forms of frontotemporal lobar degeneration

[16], indicating that they play crucial roles in other neurons. FUS/

TLS and TDP-43 are both predominantly nuclear RNA binding

proteins, although they have also been reported to bind DNA in

vitro. Both FUS/TLS and TDP-43 are believed to carry out

important functions in multiple steps of RNA processing, including

transcription, splicing, transport, translation, and decay [17]. The

finding that both are fALS genes (each accounts for about 5% of

familial ALS cases), and are involved in sALS, raises the possibility

that RNA processing or quality control (damage repair and decay

of prematurely terminated messages) may be central to ALS

pathology. However, the precise connections between RNA

biology and ALS remain to be discovered.

The FUS/TLS protein, which is ubiquitously expressed in all

tissues, contains an N-terminal putative transcriptional activation

domain (residues 1–267) rich in serine, tyrosine, glutamine, and

glycine residues, followed by a canonical RNA binding domain

(residues 285–371). The C-terminal region has a zinc finger

domain (residues 422–453) interrupting a long stretch rich in

arginines and glycines (residues 285–501). The extreme C-

terminal 25 amino acids (residues 501–526) also are rich in

arginines and glycines, and the majority of the ALS-associated

mutations are found among them. Among other postulated

functions, FUS/TLS is known to be a component of a large

nuclear ribonucleoprotein complex that functions in shuttling

mRNA out of the nucleus.

Variants of FUS/TLS have previously been studied for their

role in liposarcoma, in which the N-terminal transcriptional

activation domain of FUS/TLS is translocated into another

chromosomal locus, resulting in gene fusions and production of

chimeric oncoproteins (e.g. FUS-ERG, FUS-CHOP, and FUS-

CREB312). The fusion proteins are aberrant transcription factors

that contribute to the tumorigenic process by altering the

expression of many target genes [18].

Mutations in FUS/TLS found in fALS are largely clustered at

the extreme C-terminus of the protein. Postmortem histological

analysis from patients with FUS/TLS mutations indicates that the

normally nuclear protein is now found more predominantly in the

cytosol, where it forms punctate inclusions. This mislocalization/

inclusion-formation has been proposed to cause either a loss of

normal protein function in the nucleus, a gain of toxic function in

the cytosol, or both [5,17]. Recently, Dormann et al. [19] reported

that some of the disease-causing mutations affect a non-classical

PY nuclear localization signal (NLS) in the extreme C-terminus of

FUS/TLS and disrupt transportin-mediated nuclear import of the

protein. As a result, FUS/TLS distribution increases in the cytosol,

where the protein can be recruited into stress granules [20]. These

results have led to the hypothesis that nuclear import defects and

consequent cellular stress may be necessary, and possibly sufficient,

for FUS/TLS pathogenesis [19,20].

Since FUS/TLS-immunoreactive inclusions are reported to be

a common feature in both sporadic and familial ALS [13], it is

likely that an understanding of FUS/TLS-associated fALS could

also provide valuable information about the more common

sporadic form of the disease. Additionally, the involvement of

FUS/TLS in other neurodegenerative diseases, such as a subset of

FTLD (atypical FTLD-U) [21], neuronal intermediate filament

inclusion disease (NIFID) [22], and polyglutamine disease [23],

suggests that several neurodegenerative diseases may have similar

underlying pathogenic mechanisms. A better understanding of the

normal and aberrant functions of FUS/TLS might therefore

provide clues to uncovering the pathology of neurodegenerative

diseases beyond ALS. With this in mind, we set out to create a

model for FUS/TLS-dependent cytotoxicity in a genetically and

biochemically tractable organism.

With uniquely available genetic and biochemical tools, yeast has

proven to be a valuable system to study the functions of human

proteins involved in many diseases, including neurodegenerative

disorders [24–29]. Although yeast is a simple single-cell eukaryote,

many fundamental cellular processes are conserved between yeast

and higher eukaryotes, and a number were first discovered in S.

cerevisiae or its distant relative, S. pombe. If expression of FUS/TLS

in yeast can be shown to recapitulate some of the relevant features

of human FUS/TLS-dependent proteotoxicity, then genetic

screens can be used to dissect the pathways and processes involved.

In this article, we report a yeast model of FUS/TLS-dependent

cytotoxicity, in which over-expression and mislocalization of wild-

type or mutant FUS/TLS recapitulates the phenotypes of toxicity

and inclusion formation observed in the human disease. Certain

features of the model have allowed us to conclude that cytosolic

localization of large amounts of even the wild-type FUS protein is

sufficient to cause toxicity, supporting a hypothesis that had been

put forward based on studies in mammalian cells. A genetic screen

using this yeast model for suppressors of toxicity identifies, among

other genes, the yeast gene ECM32, an RNA helicase involved in

RNA quality control, as one that rescues FUS/TLS toxicity when

over-expressed. In addition, hUPF1, a human homolog of ECM32,

Author Summary

Of all the thousand natural shocks that flesh is heir to, one
of the most devastating is amyotrophic lateral sclerosis
(ALS), commonly known as Lou Gehrig’s Disease. This
disorder, which comes in both inherited and random
forms, is characterized by degeneration of spinal motor
neurons, leading to paralysis and death. The cause of the
sporadic form is unknown, but new insight has come from
studying the genetic variations that lead to the rarer
familial forms. One such gene, accounting for 5%–10% of
inherited ALS, is FUS/TLS, which encodes a protein that
normally lives in the nucleus of the cell and is involved in
the life-cycle of messenger RNA (mRNA). ALS-associated
mutations in FUS/TLS cause the protein to mislocalize
outside the nucleus into stress granules. Understanding
the basis for the toxicity of mislocalized FUS/TLS could lead
to new approaches to the treatment of ALS. We have
made a yeast model for FUS/TLS cellular toxicity that
recapitulates the mislocalization, granular accumulation,
and cell death. We have exploited the yeast model to
obtain information about what part of the protein is
required for proper localization and what part is essential
for toxicity. We have also identified several human genes
that, when over-expressed in yeast, are able to rescue the
cell from the toxicity of mislocalized FUS/TLS. These genes
all have functions in mRNA quality control, implicating
changes in this pathway in the pathology of ALS.

A Yeast Model of FUS/TLS-Dependent Cytotoxicity
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rescues FUS/TLS toxicity, as do its interacting partners hUPF2

and (to a lesser extent) hUPF3. The rescue does not involve a

decrease in FUS/TLS expression or a change in its localization or

inclusion formation, but it does depend on intact functional

domains of hUPF1. Since hUPF1 plays an important function in

mRNA quality control, our data raise the possibility that this

pathway might be involved in the pathogenesis of FUS/TLS-

associated ALS, and possibly of the disease in general. We have

investigated the role of one aspect of RNA quality control,

nonsense-mediated decay (NMD), using the yeast model but find

no evidence that NMD disruption is responsible for FUS/TLS

toxicity or that its upregulation is important for suppression.

Independently, Sun et al. (2010, [30]) have developed a similar

yeast model for FUS/TLS-associated ALS and have identified all of

the same suppressor genes, plus some additional ones, in a similar

screen. In addition, they have found genes that, when deleted,

modulate FUS/TLS toxicity in yeast, and have implicated stress

granules (discrete cytoplasmic phase-dense particles, observed in

cells exposed to heat, oxidative, hyperosmolarity, and UV stress,

where non-translating mRNAs are stored) in this process.

Results

Expression and Localization of Human FUS/TLS in Yeast:
Over-expression of FUS/TLS Is Toxic

Unlike wild type FUS/TLS, which is largely found in the

nucleus and somewhat diffusely in the cytosol, the mutant proteins

associated with fALS are predominantly aggregated in the

cytoplasm of neurons, where they are proposed to be toxic. To

determine whether the budding yeast S. cerevisiae may serve as a

model for investigating the molecular mechanisms of FUS/TLS

cytotoxicity, we generated yeast strains expressing FUS/TLS. The

human FUS/TLS gene, in both wild type and mutant (R521G and

H517Q) forms, was N-terminally fused to green fluorescent

protein (GFP) and placed under the control of the GAL1 promoter,

whereby expression is tightly controlled by switching the carbon

source in the medium. In these strains, expression of both WT and

mutant FUS/TLS is highly induced by shifting to galactose

medium. When either mutant or wild-type protein is over-

expressed (induced by 2% galactose), the majority of the protein

forms punctate aggregates in the cytosol (Figure 1A, and Figure

Figure 1. Expression, localization, and toxicity of FUS/TLS in yeast. (A) Cells expressing GFP or GFP-FUS were induced by 2% galactose for
6 h. Cells were then fixed and viewed by fluorescence microscopy. DAPI was used to stain the nucleus. (B) Yeast with integrated GFP, 1XFUS (1 copy
of untagged FUS integrated into the HIS3 locus in the genome), and 2XFUS (2 copies of untagged FUS integrated into the HIS3 locus and the TRP1
locus in the genome) were serially diluted (from left to right) and spotted onto plates containing either glucose (FUS expression ‘‘off’’) or galactose
(expression ‘‘on’’). Picture was taken after 2 d growth at 30uC.
doi:10.1371/journal.pbio.1001052.g001
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S1), recapitulating the nuclear to cytoplasmic translocation

phenotype characteristic of FUS/TLS-associated sporadic and

familial ALS, as well as other neurodegenerative diseases [5]. Data

from an independent yeast model of FUS/TLS cytoxicity [30] and

expression of mutant forms of FUS/TLS in mammalian cells [20]

suggest that these aggregates could be localized to stress granules.

To test possible toxicity of aggregated FUS/TLS in the cytosol,

one copy of FUS/TLS (1XFUS; untagged) and two copies of

FUS/TLS (2XFUS; untagged) were integrated into the genome of

yeast strain W303a. Yeast strains with FUS/TLS (1XFUS and

2XFUS) were serially diluted and spotted onto plates with glucose

(expression repressed) and galactose (expression induced). As

shown in Figure 1B, FUS/TLS over-expression is toxic to yeast in

a dose-dependent manner under these proliferative growth

conditions, with the 2XFUS exhibiting greater toxicity than

1XFUS. Toxicity of the over-expressed mutant proteins was

comparable to that of the wild-type (Figure S1; see below for an

explanation), so the wild-type protein was used for most of the

remaining experiments, to avoid possible sequence-dependent

peculiarities.

Inclusions Formed by FUS/TLS Are Different from Those
Formed by PolyQ-Expanded Huntingtin

In yeast models for several other protein misfolding diseases,

although the morphologies of the aggregated proteins under the

fluorescence microscope look similar, the actual characteristics of

the aggregates are sometimes quite different. For example, yeast

toxicity and aggregation of the human Huntingon’s disease–

associated protein huntingtin harboring a pathogenic polygluta-

mine expansion (Htt103Q) can be rescued by the deletion of a heat

shock protein HSP104 (hsp104D) or yeast prion protein RNQ1

(rnq1D). However, the same deletions cannot rescue the cytosolic

aggregation and toxicity of TDP-43 in yeast [28]. Previous studies

also indicate that Htt103Q forms SDS-insoluble aggregates, which

cannot pass through a 0.2 mM cellulose acetate membrane;

however, TDP43 aggregates can pass freely [28].

FUS/TLS has been found to be associated with huntingtin

aggregates in Huntington’s disease patients [23], yet the

characteristics of FUS/TLS-dependent fALS resemble those of

TDP-43-associated ALS. To test possible differences between

FUS/TLS aggregates and huntingtin or TDP-43, FUS/TLS

aggregates isolated from over-expressing yeast were tested by a

filter retardation assay. As expected, Htt103Q was trapped by the

membrane; however, FUS/TLS aggregates, like TDP43, passed

through the membrane freely (Figure 2A). Consistent with this

observation, unlike their effects on Htt103Q, deletion of HSP104

and RNQ1 did not modify the toxicity of FUS/TLS in yeast

(Figure 2B), nor its aggregation or localization (Figure 2C). In

addition, over-expression of HSP104 and RNQ1 had no effect on

FUS/TLS toxicity either (unpublished data).

Figure 2. Aggregates of FUS/TLS are different from that of Huntingtin. (A) Yeast cells containing GFP-tagged N-terminal huntingtin
harboring pathogenic polyglutamine expansions (Htt103Q, stretch of 103 consecutive glutamines), normal huntingtin (Htt25Q, stretch of 25
consecutive glutamines), and GFP tagged FUS/TLS were induced with galactose for 6 h. Filter retardation assay was performed to characterize the
aggregates. (B) GFP tagged FUS, Htt103Q, or Htt25Q was transformed into HSP104D, RNQ1D deletion strains and the isogenic wild type strain BY4743
(WT). Cells were serially diluted and spotted onto glucose (expression ‘‘off’’) or galactose plate (expression ‘‘on’’) to observe toxicity. Pictures were
taken after 2 d growth at 30uC. GFP on the same vector (GFP) was used as control. (C) The same strains as above were visualized for localization and
aggregation of the proteins by fluorescence microscopy. (D) pYES2CT/GFP-FUS (FUS) and empty vector (Vec) were transformed into wild type yeast,
and yeast containing integrated Htt103Q. Freshly grown cells were then serially diluted and spotted onto glucose (expression ‘‘off’’) or galactose
plate (expression ‘‘on’’) to observe toxicity. Pictures were taken after 2 d growth at 30uC.
doi:10.1371/journal.pbio.1001052.g002
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These differences between FUS/TLS and Htt103Q aggregates

suggest that the toxicity mechanism underlying these two proteins

might be different. Consistent with this, toxicity resulting from the

over-expression of FUS/TLS and Htt103Q is additive (Figure 2D).

The C-Terminal Domain of FUS/TLS Is Necessary But Not
Sufficient for Its Toxicity

The full-length FUS/TLS protein has an N-terminal transcrip-

tional activation domain (residues 1–267) including SYQG-rich

(residues 1–164) and G-rich (residues 165–267) subdomains, and a

C-terminal RNA binding region (residues 285–526) including

RNA binding (residues 285–370), Zinc Finger (residues 422–452),

and RGG-rich domains (residues 371–421 and 453–501)

(Figure 3A). The extreme C-terminus (residues 511–526) contains

an arginine-rich sequence and a putative nuclear localization

signal [19]; every one of the arginines in this region is the site of an

ALS-associated mutation. To pinpoint which part of FUS/TLS is

required for its toxicity in yeast, we characterized eight fragments

of the wild-type FUS/TLS protein (tagged with GFP at the N-

terminus) for their localization, aggregation, and toxicity. As

shown in Figure 3B, after removal of the C-terminal region of the

protein (constructs 1 [residues 1–164], 2 [residues 1–267], and 3

[residues 1–370]), the protein is no longer toxic, suggesting that the

C-terminal domain from residues 371 on is required for toxicity.

However, expression of the C-terminal domain only (constructs 6

[residues 165–526], 7 [residues 268–526], and 8 [residues 371–

526]) is not toxic, indicating that both C- and N-terminal regions

of the protein are essential for toxicity.

To check for a possible correlation between toxicity and

aggregation, all eight proteins (N-terminally GFP tagged) were

checked using fluorescence microscopy. As shown in Figure 3C, all

the proteins, when over-expressed, show aggregation; however,

only constructs 4 (which lacks the extreme C-terminal 15 residues)

and 5 (the full-length protein) are toxic. Interestingly, the

aggregates formed by constructs 4 and 5 appear slightly different

from each other and also may differ from the aggregates formed

by the other constructs. These data suggest that toxicity of FUS/

TLS in yeast involves mechanisms beyond protein aggregation, a

hypothesis supported by the results of the suppressor screen (see

below).

To test the possible effects of the GFP tag on toxicity, we

expressed constructs 3–5 without the N-terminal GFP fusion.

Figure 3. Toxicity and localization of individual domains of FUS/TLS. (A) A serial deletion of the full length FUS/TLS gene from c-terminus,
labeled as 1–4, and from N-terminus, labeled as 6–8, was carried out. (B) The truncated genes (with GFP tag at N-terminus) were then placed under
the control of GAL1 promoter on the yeast expression vector pYES2CT. Yeast with above constructs was serially diluted and spotted onto plate
containing either glucose (expression ‘‘off’’) or galactose (expression ‘‘on’’). Pictures of the plates were taken after 2 d growth at 30uC. (C) Cells
containing the above constructs were grown in the Ura-Raffinose medium to mid-log phase. Expression of the proteins was induced by 2% galactose
for 6 h. Localization and aggregation of the proteins was visualized by fluorescence microscopy. (D) Constructs 3–5 as shown in (A) were also cloned
into yeast expression vector pDEST52 without the GFP tag. Yeast containing the constructs was serially diluted and spotted onto glucose (expression
‘‘off’’) or galactose plate (expression ‘‘on’’). Picture of the plates was taken after 2 d growth at 30uC.
doi:10.1371/journal.pbio.1001052.g003
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Consistent with non-tagged constructs, construct 3, which lacks

the residues from 371 to 526, is not toxic, and constructs 4 and 5

are still toxic. Interestingly, the construct lacking the 15 amino

acids at the extreme C-terminal end (construct 4), where most of

the fALS mutations are clustered, is more toxic to yeast than the

full-length protein (construct 5). This result is consistent with the

recent finding that patients with a nonsense mutation of FUS/TLS

at position 495 have more rapidly progressive neurodegeneration

and earlier onset of the disease [20,31] and that the C-terminus

encodes a nuclear localization signal [19].

Localization and Toxicity of FUS/TLS in Yeast Is Not
Regulated by Either of the Major Yeast Arginine
Methyltransferases

Most mutations of FUS/TLS identified in fALS patients are

clustered at the very end of the C-terminus (residues 510–526), in a

region enriched with arginine residues [5]. At least one disease-

causing mutation has been identified for each arginine in this

region, implying that these arginine residues play a critical role for

the function of the protein. One regulatory process involving

arginine residues is dimethylation, which is an important signal for

the nuclear/cytoplasmic translocalization of a series of RNA

binding proteins. That more than 20 arginine residues are indeed

dimethylated by the enzyme PRMT1 in FUS/TLS in mammalian

cells [32], and that all the known C-terminal region mutant forms

of FUS/TLS do translocate to the cytosol, together suggest that

arginine methylation may be involved in the shuttling of FUS/

TLS between nucleus and cytosol and thus may play a role in its

toxicity. To explore the possible role of the yeast arginine methyl

transferases in mislocalization, localization and toxicity of FUS/

TLS was studied in yeast strains in which each of the two major

yeast arginine methyltransferases were deleted (rmt1D and rmt2D).

As shown in Figure 4, FUS/TLS is still toxic in rmt1D and rmt2D
strains (Figure 4A), and the protein is still aggregated in the cytosol

in both cases (Figure 4B).

To test the possible redundancy of arginine methyltransferase

activity in yeast, two small molecule compounds (AMI-1 and AMI-

4), previously shown to exhibit broad inhibition of arginine methyl

transferase activity in mammalian cells and in yeast [33], were

tested on the yeast strain over-expressing FUS/TLS. Consistent

with the results from the arginine methyl transferase deletion

study, inhibition of arginine methyl transferase by these two

compounds does not change FUS/TLS toxicity nor its localization

(unpublished data). In addition, over-expression of RMT1 and

RMT2, or of the human enzyme PRMT1, does not modify FUS/

TLS toxicity (unpublished data). These data suggest that at least

the predominant yeast arginine methyl transferases are not

involved in the cytotoxicity of FUS/TLS in yeast. We next

examined the possible role of nuclear localization signals in the

nuclear/cytosolic distribution of the human protein when

expressed in yeast.

The NLS of Human FUS/TLS Is Not Efficient in Yeast;
However, Cytosolic Localization Is Correlated with
Toxicity, Consistent with Findings for Neuronal Cells

It was recently reported that FUS/TLS carries a non-classical

PY nuclear localization signal (NLS) in its extreme C-terminus

(approx. residues 514–526) and this is necessary for its nuclear

import [19]. The disease-causing mutations clustered in this NLS

affect the nuclear localization of the protein. The toxicity of the

protein and the age of disease onset correlate with the protein’s

cytosolic mislocalization and aggregation [19,20,31]. Since wild-

type FUS was mostly aggregated in punctate granules in the yeast

cytosol, we posited that its NLS might not be functional in this

organism. If so, over-expression of even the wild-type protein

would recapitulate the toxicity of the human mutants, as observed,

through a failure in nuclear localization. To test this directly, we

compared the ability of the FUS NLS to direct nuclear localization

with a well-characterized yeast NLS that uses a similar PY

sequence (from Hrp1) by fusing them to GFP. Indeed the FUS

NLS was defective in nuclear localization (Figure 5A).

To determine if the failure in nuclear localization contributes to

toxicity, we tested two constructs, one in which the HRP1 NLS

was simply appended to the human protein (FUS_plus) and

another in which the HRP1 NLS was used to replace the FUS/

TLS (FUS_switch; Figure 5B). Both constructs dramatically

increased nuclear localization of FUS (Figure 5B) and both

reduced toxicity (Figure 5C). Aggregation was also reduced when

FUS was retargeted to the nucleus, but this is probably due to a

generally lower level of FUS expression in these constructs.

Toxicity was not completely ameliorated, likely because some

residual cytoplasmic FUS persisted even when augmented with the

HRP1 NLS (Figure 5B). This relationship between mislocalization

and toxicity is consistent with data from neuronal cells [19] and

suggests that the wild-type protein is toxic in yeast because the

nonfunctional NLS mimics the mislocalization effect of the

disease-producing mutations in human cells.

Genome Wide Screen to Identify Genes Whose Over-
expression Rescues the Toxicity of FUS/TLS in Yeast

The ability of yeast expressing human FUS/TLS to recapitulate

several salient features of disease prompted us to perform a

genome-wide over-expression screen. By identifying yeast genes

that modify FUS/TLS toxicity, we hoped to identify pathways or

proteins that would illuminate pathogenic mechanisms. We

screened an over-expression library containing a collection of

yeast open reading frames, fully sequenced and placed under the

control of a galactose-inducible promoter. A total of 5,535 genes

are covered in this library (representing 95% of the yeast genome).

We transformed each of the 5,535 genes into the yeast strain

expressing the moderately toxic one copy of FUS/TLS (untagged

FUS/TLS integrated into the yeast genome at the HIS3 locus) and

selected for those that suppress FUS/TLS toxicity upon over-

expression. All of the positive over-expression plasmids were

retransformed into a fresh yeast strain and validated for their

suppressive effects. Surprisingly, after three rounds of retesting,

only a handful of yeast genes could suppress FUS/TLS toxicity, all

of which are listed in the Table 1. FUS expression is very toxic in

yeast, and the identified suppressors do not completely abolish the

effect of FUS on yeast growth. As observed for a similar screen in a

yeast alpha-synuclein toxicity model [26], several transcription

factors that down-regulate the GAL1 promoter activity also

suppress the toxicity of FUS/TLS (Table 1, bottom section). These

modifiers were not specific to FUS/TLS; they also suppress other

toxic proteins expressed under GAL1 promoter control, such as

TDP-43.

All the FUS/TLS-specific suppressors are DNA/RNA binding

proteins (Table 1, top section; and Figure 6A), including ECM32,

SBP1, SKO1, and VHR1. As shown in Figure 6B, FUS/TLS

protein level was not altered by over-expression of these four

genetic modifiers, supporting the hypothesis that the rescue is not

mediated by reducing the amount of FUS/TLS.

ECM32 (also called MTT1) encodes a DNA-dependent

ATPase/DNA helicase belonging to the Dna2p- and Nam7p-

like family of helicases that are involved in modulating

translation termination [34]. (Interestingly, we also detected

NAM8, an RNA binding protein that interacts genetically with

A Yeast Model of FUS/TLS-Dependent Cytotoxicity
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NAM7 in yeast, as a suppressor of FUS toxicity. We include it on

our list, but we are uncertain of its specificity; it appears as a

suppressor in many screens and may cause some nonspecific

downregulation of the GAL1 promoter. Yeast NAM7, which is

sometimes called yeast UPF1, is a homologue of ECM32, but

neither we nor Sun et al. [30] found NAM7 as a strong

Figure 4. Deletion of arginine methyl transferase does not rescue FUS/TLS toxicity nor change its localization. (A) Empty vector and N-
terminus GFP-tagged FUS/TLS on pYES2CT were transformed into yeast arginine methyl transferase deletion strain rmt1D, rmt2D, and its isogenic
wild type BY4743 (WT). Spotting assay was performed to observe toxicity from the above yeast strains. (B) Expression of the proteins from above
strains was induced by 2% galactose for 6 h. Localization and aggregation of the protein was visualized by fluorescence microscopy.
doi:10.1371/journal.pbio.1001052.g004
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suppressor in our screen.) Over-expression of ECM32 is known

to induce a nonsense suppression phenotype in a wild-type yeast

strain, and the ECM32 gene product has been shown to interact

with translation termination factors and is localized to polysomes

[34]. ECM32 is homologous to the human gene hUPF1, which

encodes a protein previously shown to function in both mRNA

turnover and translation termination, and which can be found in

P-bodies, cytoplasmic granules that are sites of mRNA

Figure 5. FUS_plus and FUS_switch promote nuclear localization and lower toxicity of FUS/TLS. (A) GFP was fused with the nuclear
localization signal of FUS/TLS (GFP_FUS) and Hrp1 (GFP_Hrp1) as shown in top part of (A). Expression of protein from yeast containing above
constructs was induced by 2% galactose for 6 h. Localization and aggregation of protein was visualized by fluorescence microscopy. (B) Hrp1 NLS
was added to the c-terminal end of FUS/TLS (FUS_plus) or was used to replace nuclear localization signal of FUS/TLS (FUS_switch), as shown on part
top of (B). Protein expression from yeast containing above constructs was induced by 0.1% galactose for 6 h. Protein localization and aggregation
was visualized by fluorescence microscopy. (C) The same yeast strains were grown in raffinose medium and 0.1% galactose medium. Cell growth was
monitored using a Bioscreen machine for 2 d at 30uC. Typically, at least 10 replicates were done for each.
doi:10.1371/journal.pbio.1001052.g005
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sequestration and turnover, including nonsense-mediated decay

(NMD).

SBP1 encodes a putative RNA binding protein that is involved

in translational repression and is also found in cytoplasmic

P-bodies [35].

SKO1 encodes a basic leucine zipper transcription factor of the

ATF/CREB family, which forms a complex with Tup1p and

Ssn6p that acts as a repressor of transcription. In response to

osmotic and oxidative stress, this complex can be converted into

an activator that recruits SAGA and SWI/SNF [36].

Table 1. Yeast genes rescuing the toxicity of human FUS/TLS when over-expressed.

Gene Function Human Homologue Function of Human Homologue

Genes suppressing FUS/TLS toxicity
when over-expressed

ECM32 Member of the Dna2p- and Nam7p-like
family of RNA helicases; involved in
translation termination

UPF1 Nuclear mRNA export, mRNA surveillance, nonsense-
mediated mRNA decay, Staufen1-mediated mRNA
decay, replication-dependent histone mRNA decay,
DNA synthesis and repair, telomere maintenance

NAM8* RNA binding protein; component of
the U1 snRNP protein complex
involved in mRNA maturation

TRNAU1AP Unknown; contains a putative RNA-binding domain

SBP1 Putative RNA binding protein; localizes
to P-bodies and associates with snRNPs

RBM14 Nuclear receptor coactivator

SKO1 Transcription factor of the ATF/CREB family None

VHR1 Transcriptional activator None

Genes regulating GAL1 promoter/
general gene expression

MBP1 Transcription factor None

MIG1 Multicopy inhibitor of GAL gene expression None

MIG3 Transcriptional repressor

REG1 Negative regulator of glucose-repressible
genes

None

ZDS1 Transcriptional silencing None

ZDS2 Transcriptional silencing None

*Identified in a number of other yeast suppressor screens. May affect GAL-driven gene expression.
doi:10.1371/journal.pbio.1001052.t001

Figure 6. Expression of ECM32, SBP1, SKO1, and VHR1 rescues FUS/TLS toxicity. (A) ECM32, SBP1, SKO1, and VHR1 were individually
transformed into 1X FUS strain. Spotting assay was performed to observe toxicity of yeast containing the above constructs. (B) Protein expression was
induced by 2% galactose for 6 h from above yeast strains. Western blot analysis was performed using an antibody against FUS/TLS. PGK1 is shown as
a control of protein loading.
doi:10.1371/journal.pbio.1001052.g006
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VHR1 is a transcriptional activator that is required for the

vitamin H–responsive element (VHRE) mediated induction of

VHT1 (Vitamin H transporter) and BIO5 (biotin biosynthesis

intermediate transporter) in response to low biotin concentrations

[37]. In humans, biotin deficiency leads to a variety of clinical

abnormalities, including neurological disorders, growth retarda-

tion, and dermal abnormalities [38].

All of these genes were identified by Sun et al. in an

independent screen for suppressors in a similar yeast model for

FUS/TLS-dependent proteotoxicity [30]. Differences between

results of the two screens probably reflect differences in the

protocol of the initial pass, plus differences in stringency in

retesting.

Of the genetic modifiers identified from our screen, ECM32 is

the only gene that is capable of rescuing toxicity of yeast strains

integrated with both one copy (Figure 7A) and two copies of FUS

(Figure 7B). The other suppressors only rescue toxicity of 1XFUS

(unpublished data). We therefore turned our attention to the

human homologues of this protein.

hUPF1, a Human Homolog of ECM32, Rescues Toxicity of
FUS/TLS

Based on sequence similarity (,30% identity and ,50%

similarity in the helicase domain), hUPF1, a gene playing an

important role in the pathway of nonsense-mediated decay

(NMD), is the closest human homolog of ECM32 [39]. Because

of this homology, we hypothesized that the toxicity of FUS/TLS

may be rescued by yeast expression of hUPF1. The full-length

hUPF1 gene was cloned into a yeast expression vector and tested

on the toxicity of FUS/TLS. Over-expression of hUPF1 rescues

the toxicity of both 1XFUS and 2XFUS (Figure 7A and B). To

check for possible direct interaction between hUPF1 and FUS/

TLS, we co-expressed red fluorescent protein-tagged hUPF1 and

GFP-tagged FUS/TLS. hUPF1 is expressed mainly in the cytosol

in yeast but does not co-localize with FUS/TLS (Figure 7C),

suggesting the rescue effect by hUPF1 might be indirect. However,

more data are needed to rule out possible over-expression artifacts.

Next, we investigated whether the expression of hUPF2, another

nonsense-mediated decay pathway gene whose protein product is

known to form a complex with the UPF1 protein, might also

rescue FUS toxicity in yeast, and found that it did, to an equal

extent as that of hUPF1 (Figure 7). However, over-expression of

human UPF3, another protein known to interact with UPF1,

showed only moderate rescue compared to hUPF1 and hUPF2

(suppression of toxicity of 1XFUS but not of 2XFUS). We then

examined the expression of the next closest human homologue of

ECM32, IGHMBP2 (,25% identity), a ribosome-associated

helicase implicated in DNA replication, pre-mRNA splicing, and

transcription [40]. Mutations in IGHMBP2 cause distal spinal

muscular atrophy type 1, a neuromuscular disorder [40].

However, expression of hIGHMBP2 in yeast did not rescue

FUS/TLS toxicity (unpublished data).

To check the possible effect of ECM32, hUPF1, and hUPF2 on

the protein expression level or aggregation of FUS/TLS, Western

blots and indirect immunofluorescence using FUS/TLS antibody

were performed. Neither protein levels (Figure 8A) nor localization

or aggregation of FUS/TLS (Figure 8B) was modified by over-

expression of ECM32, hUPF1, or hUPF2.

hUPF1 has an N-terminal hUPF2 binding domain and a C-

terminal ATPase/Helicase domain. To determine whether the

rescue of FUS/TLS toxicity requires both domains, we tested the

constructs expressing only the hUPF2 binding domain (hUPF1-

418) or the ATPase/Helicase domain (hUPF419-1118). As shown

in Figure 8C, neither domain rescues the toxicity of FUS/TLS to

the extent that the full-length wild type protein rescues. To

further test whether ATPase/Helicase activity is required for the

rescue, we checked the full-length protein with ATPase/Helicase

partially inactivated by a point mutation (R844C) [41] and found

that FUS/TLS toxicity cannot be fully rescued when ATPase/

Helicase activity of hUPF1 is inhibited. It is noteworthy that

hUPF1(R844C) still has 60% of the activity of wild-type hUPF1

[41], so it is quite possible that fully inactivated hUPF1 would not

rescue at all. These data suggest that both domains of hUPF1 and

functional ATPase/Helicase activity are required for its rescue of

FUS/TLS toxicity.

CYH2 But Not MER2 Pre-mRNA Was Accumulated When
FUS Was Over-expressed

To prevent the potential accumulation of deleterious nonsense

fragments of polypeptides in the cytoplasm, mRNAs that retain an

intron containing an in-frame nonsense codon are usually

degraded by the nonsense-mediated decay (NMD) pathway. It is

long established that CYH2 and MER2 pre-mRNA are among the

substrates of this pathway in yeast. These pre-mRNAs are

accumulated 2- to 5-fold when the NMD pathway is deficient

[42]. To check the potential effects of FUS expression on the

NMD pathway, qRT-PCR was utilized to determine CYH2 and

MER2 pre-mRNA levels in 1XFUS yeast, and in its suppressor

strains. As shown in Figure 9A, CYH2 pre-mRNA was increased

about 2-fold when FUS is over-expressed, and co-expression of its

suppressor hUPF1 brought CYH2 pre-mRNA back to the wild

type level; however, co-expression of another suppressor, ECM32,

did not, suggesting that these two suppressors may rescue FUS

toxicity through different mechanisms.

In contrast to CYH2, over-expression of FUS and co-expression

of its suppressors did not change MER2 pre-mRNA levels

(Figure 9B). Since MER2 pre-mRNA is another substrate of the

NMD pathway, this result implies that accumulation of CYH2 pre-

mRNA by FUS over-expression is not through its direct effect on

the NMD pathway but through an effect on one or more

additional pathways of mRNA quality control. Possibly, the

restoration of the level of CYH2 pre-mRNA to normal by hUPF1

expression in the 1XFUS strain also does not reflect hUPF1

function in NMD.

Discussion

Many essential cellular functions are conserved in the simple

eukaryote yeast. Studies from this organism have provided

valuable information for our understanding of many critical

cellular functions, including cell cycle regulation, DNA replication,

RNA synthesis and processing, protein synthesis, protein traffick-

ing, and signal transduction. This simple system has also been

utilized to study functions of proteins involved in human diseases,

including neurodegenerative diseases. Although a yeast model

usually cannot recapitulate all of the cellular processes in human

cells, it has proven to capture key aspects of molecular pathology

for several neurodegenerative disorders [27]. With its ease of high-

throughput manipulations for both genetics and biochemistry, the

yeast model organism provides invaluable tools for studying

molecular mechanisms of human diseases. For those human

proteins for which yeast cytotoxicity models are available, toxicity

from each protein is usually quite different. Genetic modifiers

identified from those yeast models usually do not overlap,

supporting the use of yeast models for studying functions of

human proteins specifically.

In this article, we report a yeast model of FUS/TLS-associated

proteotoxicity when the protein is mislocalized to the cytoplasm.

A Yeast Model of FUS/TLS-Dependent Cytotoxicity
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The model faithfully recapitulates the cytosolic aggregation and

cytotoxicity observed in spinal motor neurons in the human

disease. We exploited this model to test various hypotheses about

FUS-mediated cytotoxicity. Comparison of the aggregates isolated

from the model with those from yeast models of huntingtin toxicity

and TDP-43 toxicity showed that they differed from the former

but were similar to the latter; two yeast genes known to affect

huntingtin aggregation when over-expressed also failed to affect

FUS/TLS localization or aggregation. Clustering of fALS-

associated FUS mutations in regions of potential arginine

dimethylation prompted us to investigate the effects of deletion

of either of the major yeast arginine methyltransferases on

Figure 7. hUPF1 rescues FUS/TLS toxicity. hUPF1 and hUPF2 were cloned into yeast expression vector pYES2CT. (A) The constructs were
transformed into 1XFUS (one copy of FUS/TLS integrated at HIS locus). Spotting assay was performed to check the rescue of toxicity by hUPF1 and
hUPF2. Empty vector and ECM32 construct from library screen were used as negative and positive controls. (B) The above constructs were
transformed into 2XFUS (two copies of FUS/TLS integrated at HIS locus and TRP locus, respectively). Spotting assay was performed to check the
rescue of toxicity by hUPF1 and hUPF2. (C) GFP tagged FUS/TLS (pYES2CT/GFP-FUS) and RFP tagged hUPF1 (pRSGal1hUPF1-DsRed) were transformed
into yeast. Protein expression was induced by 2% galactose for 6 h and visualized by fluorescence microcopy.
doi:10.1371/journal.pbio.1001052.g007
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FUS/TLS cytosolic localization and toxicity, but neither their

deletions nor introduction of known chemical inhibitors of yeast

arginine methyltransferase activity had any effect on these

properties. Over-expression of the major yeast and human

arginine methyltransferaaes also failed to modulate FUS/TLS

toxicity in yeast. However, we have no data at present to indicate

that human FUS/TLS is a substrate for the yeast arginine

methyltransferases (even though they are close homologues of the

major human arginine methyltransferase, PRMT1), so we cannot

conclude from this experiment that arginine methylation may play

no role in FUS/TLS toxicity in mammalian cells. It does not seem

to be a major factor in toxicity in yeast.

Initially, the observation that both WT and mutant FUS

localized to the cytoplasm and were equally toxic was unexpected.

However, recent work on the C-terminal FUS mutations provides

a satisfying explanation [19]. These mutations prevent the nuclear

import of FUS, increasing cytoplasmic accumulation in stress

granules and, eventually, producing toxic and insoluble aggre-

gates. FUS uses an unusual nuclear localization signal (NLS) of the

bPY-type. Although yeast has this same bPY-type nuclear

localization system, divergence in the recognition signal would

cause toxic mislocalization of even the WT FUS protein in yeast.

Indeed, when we compared the ability of the WT FUS NLS signal

and a known functional yeast bPY-type NLS to drive a GFP

reporter into the nucleus, the FUS signal was nonfunctional. Next,

we reasoned that if cytoplasmic mislocalization of FUS was

responsible for increased toxicity, then restoring nuclear localiza-

tion with a recognition sequence that does function in yeast should

reduce toxicity. This proved to be correct. Thus, our work

provides an independent validation of Haass’ recent model [19],

recapitulating the observation that cytoplasmic mislocalization is

important in the toxicity of FUS. This mechanistic link between

mutations and toxicity is in contrast to TDP-43, where ALS

mutations increase aggregation in vitro (as opposed to transport)

and enhance toxicity in yeast [28]. In agreement, the accompa-

nying manuscript demonstrates that FUS mutations do not alter

aggregation or toxicity [30]. The lack of an effect of ALS

mutations in yeast separates two aspects of FUS pathology—(1)

mislocalization and (2) cytoplasmic toxicity. Since the NLS is

nonfunctional in yeast, our system models the cytoplasmic-

dependent toxicity, but not the mechanism of mislocalization

itself. Because the link between mislocalization and ALS mutants

Figure 8. Rescue of FUS/TLS toxicity requires full length hUPF1, and rescue is not mediated by decrease in FUS/TLS protein level or
inclusion formation of the protein. (A) Protein expression was induced by 2% galactose for 6 h in 1XFUS strain expressing hUPF1, hUPF2, or
ECM32. Western blot was performed using an antibody against FUS/TLS to check the expression of FUS/TLS. PGK1 is shown as a control of protein
loading; (B) the same yeast cells were also subject to indirect immunofluorescence staining using primary antibody against FUS/TLS, and secondary
antibody conjugated with fluorescein. Nuclear DNA was stained with DAPI. (C) Different domains of hUPF1 were cloned into a yeast expression vector
and transformed into 1XFUS strain. Spotting assay was performed to check rescue of the toxicity. hUPF1-418, hUPF2 binding domain; hUPF419-1118,
ATPase/Helicase domain; hUPF1R843C, inactivated ATPase/Helicase by arginine to cysteine mutation at residue of 843 in the full length FUS/TLS.
doi:10.1371/journal.pbio.1001052.g008
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Figure 9. Yeast CYH2 but not MER2 pre-mRNA was accumulated when FUS is over-expressed. Cells were grown in raffinose medium to
early log phase. Protein expression was induced by 2% galactose for 6 h in 1XFUS strain expressing empty vector (1XFUS), human UPF1 (+hUPF1), or
ECM32 (+ECM32). CYH2 pre-mRNA (A) and MER2 pre-mRNA level (B) were determined by qRT-PCR using 18sRNA as an internal control. Pre-mRNA in
wild type yeast cell without integration of FUS (WT) was normalized to 1.
doi:10.1371/journal.pbio.1001052.g009
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has been established, we view the inability to model mislocaliza-

tion not as a liability but rather as a strength, in that it allows us to

focus on toxicity itself.

We also expressed a series of FUS/TLS constructs with various

domains deleted and found that the C-terminal region of the

protein was necessary but not sufficient for toxicity. In an

independent, more detailed study using a similar yeast model of

FUS/TLS toxicity, Sun et al. [30] conclude that, in contrast to

TDP-43, determinants in both the N- and C-terminal regions of

FUS are required to couple aggregation to toxicity in vivo and for

spontaneous aggregation in vitro, suggesting that FUS aggregates

by a mechanism distinct from that of TDP-43. They also find that

FUS is intrinsically aggregation-prone and that the aggregates

formed by purified FUS in vitro closely resemble the aggregates

observed in affected neurons in human disease.

Some of the aggregates formed by the various deletion

constructs appeared to differ from one another slightly when

viewed microscopically. We have not yet characterized the nature

of the aggregation in any of these cases, but if different

morphological aggregates are indeed toxic and similar-looking

aggregates are not always toxic, as we in fact observe, our data

lend support to the conclusion that aggregation and toxicity may

not be tightly coupled in this system.

Using a yeast over-expression library screen, we identified five

yeast genes that, when over-expressed, rescue the toxicity of FUS/

TLS. Strikingly, all five genetic modifiers are, like FUS, DNA/

RNA binding proteins. We have compared genetic modifiers from

other yeast models and found that these five genes are not

identified as suppressors in other yeast models for neurodegener-

ative diseases, including Parkinson’s disease (over-expression of a-

synuclein [25]), TDP-43-dependent ALS (over-expression of wild-

type TDP-43 [28]), and Huntington’s disease (over-expression of

polyQ-expanded huntingtin [24]), indicating that they are specific

to FUS/TLS. We also note that genetic screens from other yeast

models usually identify many more genetic modifiers. The very

limited number of hits from our FUS/TLS yeast model suggests

that the toxicity of FUS/TLS may stem from its effect on a limited

number of cellular functions. Our screening results are similar to

results obtained independently by Sun et al. [30], who found 23

over-expression suppressors (including all of the genes we

identified) and also carried out a screen for yeast genes that

modify toxicity when deleted. Further, they provide compelling

evidence that stress granules and P-bodies are likely to be involved

in FUS/TLS effects in yeast. We have also found a correlation

between mutant FUS/TLS and stress granules that may be

relevant to ALS pathogenesis [20].

Most importantly, we found that expression of hUPF1 (or of its

physical interacting partner hUPF2 and, to a lesser extent, hUPF3)

rescues FUS/TLS toxicity. Among other roles, hUPF1 plays a very

important function in mRNA quality control, including nonsense-

mediated decay (NMD), a critical cellular mechanism of mRNA

surveillance that functions to detect nonsense mutations and

prevent the expression of truncated or erroneous proteins [43]. It

has been proposed that a principal event underlying neurodegen-

eration occurs when cytotoxic, truncated proteins are expressed

from normally degraded nonsense-containing RNAs and pseudo-

gene transcripts [44]. Our finding that hUPF1 and hUPF2 rescue

the toxicity of FUS/TLS is broadly consistent with this hypothesis;

however, our results from examination of the level of specific

NMD mRNA substrates (see below) suggest that NMD cannot be

the sole RNA pathway affected by FUS or its suppressors in yeast.

Our results do suggest the possibility that disruption of some part

of the RNA quality control process might be related to the toxicity

mechanism of FUS/TLS.

Because ECM32, hUPF1, or hUPF2 expression all rescue FUS

toxicity without dissolving the cytosolic aggregates or changing the

expression level of FUS or its mislocalization, it is likely that

toxicity involves disruption of some essential cellular function that

is either restored or compensated for by the introduction of these

genes. One possibility is that FUS over-expression sequesters RNA

and/or protein molecules involved in nonsense-mediated decay,

which is an essential function in yeast. Yeast contains no FUS

homologue, but many of the other proteins important for RNA

quality control are conserved between S. cerevisiae and humans.

To check the possible direct effect of FUS on the NMD pathway,

we determined pre-mRNA levels of CYH2 and MER2, which are

among the reported substrates of the NMD pathway in yeast. If this

pathway is impaired by FUS over-expression, it is then expected

that both pre-mRNAs would be accumulated. However, only CYH2

pre-mRNA is increased by FUS expression in our assay, suggesting

that FUS may interfere with other RNA quality control systems,

rather than exerting a direct effect on the NMD pathway. It is worth

mentioning that CYH2 pre-mRNA was accumulated to a much

higher level than MER2 in our assay (5-fold versus 2-fold;

unpublished data); this may help to explain no detected accumu-

lation of MER2 pre-mRNA when FUS is over-expressed.

In addition, co-expression of hUPF1 and yeast ECM32, two

suppressors of FUS toxicity, had different effects on the accumulated

CYH2 pre-mRNA level caused by over-expression of FUS. Together

with their different rescuing effects on other yeast neurodegenerative

disease models, these data suggest that hUPF1 and ECM32 may

rescue FUS toxicity through different mechanisms.

It is important to emphasize that we are not claiming that this is a

yeast model of a human disease. It is a model for the cytotoxicity of a

human protein whose mislocalization to the cytosol causes a

devastating neurologic disorder. It appears to recreate the salient

features of that part of the pathology: cytosolic localization,

aggregation in stress granules, and cell death. It has allowed us to

determine the parts of the protein essential for toxicity, to test

hypotheses about the factors responsible for localization, and to

identify suppressor genes in both the yeast and human genome. We

believe that the fact that wild type and mutant are both toxic in this

model is not a failing of the model. Both wild-type and mutant are

mislocalized to the same extent in yeast because the FUS nuclear

localization signal, where the mutations occur, is not efficient in the

microbe, and so if the neurotoxicity of the mutants is entirely due to

their mislocalization, as has been hypothesized by others, then the

wild type protein should also be toxic in our model, exactly as observed.

In summary, our yeast model recapitulates multiple features of

disease-causing mutant protein FUS/TLS pathology, including

aggregation, cytosolic localization, and toxicity, which should make

it valuable for studying the function and mechanism of toxicity of

this protein in human neurodegenerative disorders. In addition, our

model is amenable to high-throughput small molecule screens to

identify compounds that suppress FUS/TLS toxicity. Like TDP-43,

which saw a number of cell culture and animal models follow its

identification as an ALS/FTLD protein, we envisage a similar

trajectory for FUS/TLS. By importing our yeast findings into

mammalian cell culture and neuronal systems, we anticipate

creating a yeast discovery/mammalian confirmation paradigm that

will yield critical insights into FUS/TLS pathobiology and

potentially provide therapeutic targets or pathways for exploitation.

Materials and Methods

Plasmids
N-terminal GFP-tagged FUS (pYES2/GFP-FUS): GFP tagged

FUS gene was amplified from pDEST53/FUS by PCR using
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forward primer 59- ATTAGCCGGGTACCATGGCCTCAAAC-

GATTATACCC-39, and reverse primer 59-ATTAGCCGTCTA-

GATTAATACGGCCTCTCCCTGC-39, and sub-cloned into

KpnI and XbaI sites of yeast expression vector pYES2CT

(Invitrogen).

Entry clone of FUS (pDONR221/FUS): full-length FUS gene

in destination vector pDEST53/FUS was transferred into

Gateway entry vector pDONR221 (Invitrogen) using BP reaction

(Invitrogen).

Yeast expression and integration constructs of FUS: A gateway

LR reaction (Invitrogen) was used to shuttle FUS gene from entry

clone into gateway compatible yeast expression vectors (pAG

vectors, www.addgene.org/yeast_gateway).

Yeast expression vectors of UPF1 (pYES2/UPF1) and UPF2

(pYES2/UPF2): UPF1 and UPF2 were amplified by PCR. The

genes were generously supplied by Dr. Lynne Maquat of

Rochester University School of Medicine and Dentistry. UPF1

was sub-cloned into BamHI and XhoI sites of pYES2CT, and

UPF2 was sub-cloned into NotI and XhoI sites of pYES2CT.

GFP and FUS NLS fusion constructs were generated using an

overlap PCR strategy. GFP and HRP1 or FUS/TLS NLSs were

PCR amplified in the first step. In the second step, GFP was

combined with either HRP1 or FUS/TLS NLS PCR using the

GFP forward primer and HRP1 or FUS/TLS reverse primer.

This product was cloned into Pst1/Spe1 sites in the pRS424Gal1

vector. For ‘‘FUS_plus’’ or ‘‘FUS_switch’’ constructs, the first

PCR step amplified FUS or FUS lacking the C-terminal PY NLS

and the Hrp1 NLS. Full-length FUS or NLS-lacking FUS were

combined with the Hrp1 NLS PCR product and amplified in a

second reaction containing a FUS forward primer and HRP1

reverse primer. This final product was cloned into pRS424Gal1.

Oligo sequences are available upon request.

All constructs made for this study were confirmed by

sequencing.

Yeast Strains, Media, and Growth Conditions
1XFUS integration strain was generated by linearizing

pAG303GAL1FUS with NheI, and followed by transformation

into W303a strain (MATa can1-100, his3-11,15, leu2-3,112, trp1-

1, ura3-1, ade2-1).

2XFUS integration strain was generated by linearizing

pAG303GAL1FUS with NheI, and pAG304GAL1FUS with

BstZ17I, followed by transformation into W303a strain (MATa
can1-100, his3-11,15, leu2-3,112, trp1-1, ura3-1, ade2-1). Both

1XFUS and 2XFUS strains were confirmed by PCR.

Htt25 and Htt103 strains: N-terminal fragments of huntingtin

with 23 glutamine repeats or 103 glutamine repeats, respectively,

were integrated into HIS locus of W303 strain.

rmt1D, rmt2D, hsp104D, and rnq1D strains are homozygous

diploid from the yeast deletion collection (Research Genetics).

BY4743 is its isogenic wild type.

Synthetic media lacking uracil (Ura-), histidine (His-), histidine

and tryptophan (His-Trp-), histidine and uracil (His-Ura-), and

containing 2% glucose, raffinose, or galactose were used for the

respective yeast strains.

Yeast cells were grown in 30u incubators (plate) or 30u shakers

(liquid medium) unless specially mentioned.

Growth curves of FUS NLS strains were monitored using

Bioscreen (www.bioscreen.fi). Yeast strains were pre-grown in 2%

raffinose, diluted to an OD600 of 0.01, and induced with 0.1%

galactose for 2 d with OD measurements taken every 10 min. Raw

data were averaged among triplicates and OD600 plotted over

time. Three independent experiments were performed and a

representative shown.

Yeast Over-expression Library
The over-expression library is the FLEXGene Collection [45].

Additional information about the yeast FLEXGene Collection

is available at http://plasmid.med.harvard.edu/PLASMID/Get

Collection.do?collectionName=HIP%20FLEXGene%20Saccharo

myces%20cerevisiae%20%28yeast%29%20ORF%20collection%

20%28pBY011%20expression%20vector%29. For the expression

screen, the clones were transferred into a galactose-inducible

expression plasmid (pBY011; CEN, URA3, AmpR) using the

Gateway technology (Invitrogen).

Yeast Transformation
Yeast expression constructs were transformed using standard

PEG/lithium acetate method. Briefly, cells from one-milliliter

overnight culture plus DNA construct was mixed with transfor-

mation buffer (80 ml 50% PEG3350, 10 ml 1M DTT, and 10 ml

2M LiAC), followed by incubation at 42u waterbath for 45 min

(with occasional mix during the incubation). Cells were then

spread onto respective dropout plates and grown at 30u for 3–4 d.

Serial Dilution and Spotting
Yeast cells were grown overnight to mid-log phase. Cultures

were then normalized to OD600 = 5.0, and 106 serially diluted

and spotted onto the respective dropout plates containing 2%

glucose or galactose.

Immunobotting
Yeast crude extract was subjected SDS-PAGE, and protein was

transferred onto PVDF membrane (Millipore), followed by 30 min

incubation with superblock (Thermosci). PVDF membrane was

then hybridized with primary antibody for 2 h at RT, followed by

wash with 1XPBS 5 times (10 min each), incubation with

secondary antibody conjugated with alkaline phosphatase (Pro-

mega) for 2 h, and 5610 min wash with 1XPBS. The membrane

was finally developed with one-step NBT/BCIP solution (Thermo

scientific). The anti-FUS antibody (Abcam) and anti-PGK1

(Invitrogen) were used at a dilution of 1:1,000. The AP conjugated

secondary antibody was used at dilution of 1:10,000. For FUS

NLS fusion experiments, cells were induced with 0.1% galactose

for 6 h, after which they were fixed and visualized with anti-FUS

antibody as described above.

Fluorescence Microcopy of GFP-Tagged Protein
Cells were grown in selective raffinose medium to early log phase,

and 2% galactose was then added into the medium for 6 h to induce

the expression of the protein. Cells were harvested and fixed 1 h on

ice in freshly made fixation buffer (50 mM Kpi pH 6.5; 1 mM

MgCl2, and 4% formaldehyde). Cells were then washed 3 times with

1XPBS before viewing by fluorescence microscopy.

To visualize the nucleus, following the PBS washes, cells were

incubated in PBS containing DAPI (1:1,000) for 30 min. Cells

were finally washed 3 times with 1XPBS before viewing by

fluorescence microscopy.

Filter Retardation Assay
Yeast cells were grown in raffinose medium to early log phase.

Expression of protein was induced for 6 h by adding 2% galactose

into the medium. Cells were harvested and treated with zymolase,

and the spheroblast was broken by vortex, and protein extract was

prepared by collecting the supernatant (centrifuge 5,000 rpm,

5 min). Protein concentration was determined by Bradford assay.

2% of SDS was added to the protein sample before the sample was

boiled for 5 min. 10-fold dilutions of protein samples was prepared

A Yeast Model of FUS/TLS-Dependent Cytotoxicity

PLoS Biology | www.plosbiology.org 15 April 2011 | Volume 9 | Issue 4 | e1001052



in 96-well plates, and loaded onto the prepared manifold (V&P

scientific) with cellulose acetate membrane (pore size 2 m; What-

man). Vacuum was applied and all the liquid was sucked through

the manifold. After washing 5 times with 0.2% SDS, the manifold

was dissembled carefully, and cellulose acetated membrane was

used for Western blotting to detect protein.

Indirect Immunofluorescence of Yeast Cells
Indirect immunofluorescence of yeast cells with FUS antibody was

adapted from chapter 40 of ‘‘Guide to Yeast Genetics and Molecular

Biology.’’ Yeast cells were grown to early log phase in the selective

raffinose medium, and expression of the interested protein was

induced for 6 h by 2% galactose. Cells were fixed in freshly made

fixation buffer (50 mM Kpi pH 6.5, 1 mM MgCl2, and 4%

formaldehyde) for 2 h at room temperature. Cells were then washed

two times with PM buffer (0.1 M Kpi pH 7.5, 1 mM MgCl2) and

resuspended with PM buffer with protease inhibitors (Roche). Cells

were then treated with zymolase for 20 min. Spheroblasts were

harvested at 2,000 rpm and washed once with PM with protease

inhibitors. Cells were then spotted onto poly-l-lysine coated well of the

slide. We immersed the slide for 5 min each in methanol and acetone

(pre-cooled to 220uC). Cells were then blocked by PBS-block

(1XPBS, 1% dried milk, 0.1%BSA, 0.1% octyl glucoside) for 1 h,

followed by incubation with primary antibody (Abcam, 1:100

dilution), wash, incubation with secondary antibody conjugated with

fluorescein (Invitrogen, 1:100 dilution), and wash.

5 ml of mounting solution (Santa Cruz Biotech) was added to

each well, and cells were viewed using fluorescence microscope.

To visualize nucleus, DAPI (1:1,000) was included in the mounting

solution.

Yeast Over-expression Library Screen
One copy integrated FUS strain (1XFUS) was grown to early

log phase and washed with 0.1 M lithium acetate (LiAc) in TE

buffer. Cells were then resuspended in 0.1 M LiAC, and 35 ml of

the resuspended cells was aliquoted into 96-well plates and

incubated at 30u for 30 min. 1 ml of yeast FLEXGene Collection

DNA (the Collection consists of vectors expressing each of 5,535

individual yeast genes, arrayed on 96-well plates; see [44]), and

125 ml transformation buffer (0.1 M Lithium Acetate, 10%

DMSO, 40% PEG3350) was then added to the plate, followed

by 30 min incubation at 30u, and 20 min heat shock at 42u. Cells

were pelleted and resuspended into 200 ml of synthetic Ura-

dropout medium, 10 ml of which was then inoculated into new

plate with 200 ml Ura- dropout medium in each well. Cells were

grown at 30uC for 2–3 d. All the liquid handling was done using

liquid handling robot (Tecan Freedom EVO).

Cells were mixed using 96-well plate vortexer (VWR), and

quadruply spotted onto Ura-Glucose and Ura-Galactose plates

using Singer RoToR Robot (Singer Instruments), followed by

incubation at 30u for 2–3 d. Colonies grown on galactose plates

were considered as putative suppressors.

After the whole library (5,535 genes) was screened, all the putative

suppressors were re-tested by re-transforming the corresponding

genes into 1XFUS strain. Those surviving the re-test are finally

confirmed by manually transforming each of the corresponding genes

into 1XFUS stain, and phenotype was re-tested by serial dilution.

Pre-mRNA Analysis by qRT-PCR
Cells were grown in synthetic raffinose medium to early log

phase; expression of FUS and its suppressors (hUPF1 and ECM32)

were induced by 2% galactose for 6 h. Cells were harvested, and

total RNA was extracted using the standard hot acidic phenol

method (Current Protocols in Molecular Biology, Unit 13.12).

RNA was treated with DNase I (Promega) to remove the trace

contamination of genomic DNA before it was used for cDNA

synthesis. cDNA was synthesized using the superscript III

platinum two-step qRP-PCR kit (Invitrogen). qPCR was per-

formed on stepOnePlus real-time PCR system (Applied Biosys-

tems). The PCR mixture contained platinum Taq and SYBR

Green I (Invitrogen) and the corresponding primers: CYH2Pre

forward: 59-GTATCAAATGGTTGTAGAGAGCGC-39, CY-

H2Pre reverse: 59-TGTGGAAGTATCTCATACCAACC-39;

MER2Pre forward: 59- GAACAAGATGCTGCTACGAACG-

GT-39, MER2Pre reverse: 59- TGCCTGTAGCTGGAATCC-

GACTTT-39. mRNA levels were quantified and normalized to

that of 18sRNA, using primers: 18sRNA forward: 59- TTCTG-

GCTAACCTTGAGTCC-39, and 18sRNA reverse 59- AAA

ACG TCC TTG GCA AAT GC-39.

Supporting Information

Figure S1 Inclusion formation and toxicity of FUS/TLS in wild

type and mutant forms (H517Q and R521G) are comparable. (A)

Cells expressing GFP-FUS on pYES2CT vector in both wild type

and mutant forms (H517Q and R521G) were induced by 2%

galactose for 6 h. Cells were then fixed and viewed by fluorescence

microscopy. DAPI was used to stain the nucleus. (B) The same

cells were subjected to Western blot analysis using an antibody

against FUS/TLS. PGK1 is shown as a control of protein loading.

(C) The spotting assay was performed to observe toxicity from the

same yeast strains as above.

(TIF)
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