107 research outputs found

    Detection of siRNA induced mRNA silencing by RT-qPCR: considerations for experimental design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA interference (RNAi) has been one of the most rapidly expanding areas of biological research in the past decade, revolutionizing the ability to analyze gene function. Thorough validation of siRNA duplexes is required prior to use in experimental systems, ideally by western blotting to show a reduction in protein levels. However, in many cases good antibodies are not available, and researchers must rely on RT-qPCR to detect knockdown of the mRNA species.</p> <p>Findings</p> <p>We have observed a phenomenon that gives a disparity between analyzing small interfering RNA (siRNA) efficacy by western blotting of the protein levels and real-time quantitative PCR (RT-qPCR) measurement of mRNA levels. Detection of this phenomenon was dependent upon the location of the target amplicon for PCR primers within the mRNA.</p> <p>Conclusions</p> <p>Our data suggests that for certain mRNAs, degradation of the 3' mRNA fragment resulting from siRNA mediated cleavage is blocked, leaving an mRNA fragment that can act as a template for cDNA synthesis, giving rise to false negative results and the rejection of a valid siRNA duplex. We show that this phenomenon may be avoided by the careful design of RT-qPCR primers for each individual siRNA experiment.</p

    The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    Get PDF
    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the “internet of things” is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation

    Bioluminescence of Vibrio fischeri: bacteria respond quickly and sensitively to pulsed microwave electric (but not magnetic) fields

    Get PDF
    Biological systems with intrinsic luminescent properties serve as powerful and noninvasive bioreporters for real-time and label-free monitoring of cell physiology. This study employs the bioluminescent marine bacterium Vibrio fischeri to investigate the effects of separated microwave electric (E) and magnetic (H) fields. Using a cylindrical TM010 mode aluminum resonant cavity, designed to spatially separate E and H fields of a pulsed microwave (2.45 GHz) input, we sampled at 100-ms intervals the 490-nm emission of bioluminescence from suspensions of the V. fischeri. E-field exposure (at 4.24 and 13.4 kV/m) results in rapid and sensitive responses to 100-ms pulses. H-field excitation elicits no measurable responses, even at 100-fold higher power input levels (equivalent to 183 A/m). The observed effects on bacterial light output partially correlate with measured E-field-induced temperature increases. In conclusion, the endogenous bioluminescence of V. fischeri provides a sensitive and noninvasive method to assess the biological effects of microwave fields

    Intracellular oxygen: similar results from two methods of measurement using Phosphorescent nanoparticles

    Get PDF
    The ability to resolve the spatio-temporal complexity of intracellular O2 distribution is the "Holy Grail" of cellular physiology. In an effort to obtain a minimally invasive approach to the mapping of intracellular O2 tensions, two methods of phosphorescent lifetime imaging microscopy were compared in the current study and gave similar results. These were two-photon confocal laser scanning microscopy with pinhole shifting, and picosecond time-resolved epi-phosphorescence microscopy using a single 0.5 μm focused spot. Both methods utilized Ru coordination complex embedded nanoparticles (45 nm diameter) as the phosphorescent probe, excited using pulsed outputs of a titanium–sapphire Tsunami lasers (710–1050 nm)

    Association between surgeon special interest and mortality after emergency laparotomy

    Get PDF
    © 2019 BJS Society Ltd Published by John Wiley & Sons Ltd Background: Approximately 30 000 emergency laparotomies are performed each year in England and Wales. Patients with pathology of the gastrointestinal tract requiring emergency laparotomy are managed by general surgeons with an elective special interest focused on either the upper or lower gastrointestinal tract. This study investigated the impact of special interest on mortality after emergency laparotomy. Methods: Adult patients having emergency laparotomy with either colorectal or gastroduodenal pathology were identified from the National Emergency Laparotomy Audit database and grouped according to operative procedure. Outcomes included all-cause 30-day mortality, length of hospital stay and return to theatre. Logistic and Poisson regression were used to analyse the association between consultant special interest and the three outcomes. Results: A total of 33 819 patients (28 546 colorectal, 5273 upper gastrointestinal (UGI)) were included. Patients who had colorectal procedures performed by a consultant without a special interest in colorectal surgery had an increased adjusted 30-day mortality risk (odds ratio (OR) 1·23, 95 per cent c.i. 1·13 to 1·33). Return to theatre also increased in this group (OR 1·13, 1·05 to 1·20). UGI procedures performed by non-UGI special interest surgeons carried an increased adjusted risk of 30-day mortality (OR 1·24, 1·02 to 1·53). The risk of return to theatre was not increased (OR 0·89, 0·70 to 1·12). Conclusion: Emergency laparotomy performed by a surgeon whose special interest is not in the area of the pathology carries an increased risk of death at 30 days. This finding potentially has significant implications for emergency service configuration, training and workforce provision, and should stimulate discussion among all stakeholders

    Fluorescent functionalised naphthalimides and their Au(i)–NHC complexes for potential use in cellular bioimaging

    Get PDF
    A series of cationic, dihydroimidazolinium-functionalized 1,8-naphthalimide fluorophores have been isolated as their hexafluorophosphate salts, [HL]PF6. These pro-ligands react with [AuCl(tht)] in the presence of base to form N-heterocyclic carbene (NHC) complexes, [AuCl(L)]. Two X-ray structures represent a pro-ligand and complex pairing: the latter reveals the two-coordinate linear geometry of the NHC–Au(I) species, as well as intermolecular interactions supported by both ligand π–π stacking and a weak aurophilic interaction of 3.3205(6) Å. The luminescence properties of the pro-ligands and complexes are dominated by the ICT character of the substituted fluorophore at ca. 500 nm, which is further modulated via functionalization at the 4-position of the naphthalimide. Cytotoxicity assessments were performed for all [HL]PF6 and [AuCl(L)] species against LOVO, MCF-7, A549 and PC3 cell lines; added lipophilicity seems to correlate with increased cytotoxicity. Confocal fluorescence microscopy was undertaken on a selected [HL]PF6 and [AuCl(L)] species and showed that the intracellular distribution is dependent upon the specific ligand structure. More detailed co-localisation studies show that selected examples present a predominant lysosomal staining pattern. FLIM studies exemplified the applicability of these probes, and secondly suggest that fluorescence lifetime could be used to provide information on the integrity of the complex and thus liberation of gold in a biological environment

    Non-thermal disruption of β-adrenergic receptor-activated Ca2+ signalling and apoptosis in human ES-derived cardiomyocytes by microwave electric fields at 2.4 GHz

    Get PDF
    The ubiquity of wireless electronic-device connectivity has seen microwaves emerge as one of the fastest growing forms of electromagnetic exposure. A growing evidence-base refutes the claim that wireless technologies pose no risk to human health at current safety levels designed to limit thermal (heating) effects. The potential impact of non-thermal effects of microwave exposure, especially in electrically-excitable tissues (e.g., heart), remains controversial. We exposed human embryonic stem-cell derived cardiomyocytes (CM), under baseline and beta-adrenergic receptor (β-AR)-stimulated conditions, to microwaves at 2.4 GHz, a frequency used extensively in wireless communication (e.g., 4G, Bluetooth™ and WiFi). To control for any effect of sample heating, experiments were done in CM subjected to matched rates of direct heating or CM maintained at 37 °C. Detailed profiling of the temporal and amplitude features of Ca2+ signalling in CM under these experimental conditions was reconciled with the extent and spatial clustering of apoptosis. The data show that exposure of CM to 2.4 GHz EMF eliminated the normal Ca2+ signalling response to β-AR stimulation and provoked spatially-clustered apoptosis. This is first evidence that non-thermal effects of 2.4 GHz microwaves might have profound effects on human CM function, responsiveness to activation, and survival

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore