137 research outputs found

    Initial clinical trial of epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus

    Get PDF
    B cells play an important role in the pathogenesis of systemic lupus erythematosus (SLE), so the safety and activity of anti-B cell immunotherapy with the humanized anti-CD22 antibody epratuzumab was evaluated in SLE patients. An open-label, single-center study of 14 patients with moderately active SLE (total British Isles Lupus Assessment Group (BILAG) score 6 to 12) was conducted. Patients received 360 mg/m(2 )epratuzumab intravenously every 2 weeks for 4 doses with analgesic/antihistamine premedication (but no steroids) prior to each dose. Evaluations at 6, 10, 18 and 32 weeks (6 months post-treatment) follow-up included safety, SLE activity (BILAG score), blood levels of epratuzumab, B and T cells, immunoglobulins, and human anti-epratuzumab antibody (HAHA) titers. Total BILAG scores decreased by ≥ 50% in all 14 patients at some point during the study (including 77% with a ≥ 50% decrease at 6 weeks), with 92% having decreases of various amounts continuing to at least 18 weeks (where 38% showed a ≥ 50% decrease). Almost all patients (93%) experienced improvements in at least one BILAG B- or C-level disease activity at 6, 10 and 18 weeks. Additionally, 3 patients with multiple BILAG B involvement at baseline had completely resolved all B-level disease activities by 18 weeks. Epratuzumab was well tolerated, with a median infusion time of 32 minutes. Drug serum levels were measurable for at least 4 weeks post-treatment and detectable in most samples at 18 weeks. B cell levels decreased by an average of 35% at 18 weeks and remained depressed at 6 months post-treatment. Changes in routine safety laboratory tests were infrequent and without any consistent pattern, and there was no evidence of immunogenicity or significant changes in T cells, immunoglobulins, or autoantibody levels. In patients with mild to moderate active lupus, 360 mg/m(2 )epratuzumab was well tolerated, with evidence of clinical improvement after the first infusion and durable clinical benefit across most body systems. As such, multicenter controlled studies are being conducted in broader patient populations

    Epratuzumab (humanised anti-CD22 antibody) in primary Sjögren's syndrome: an open-label phase I/II study

    Get PDF
    This open-label, phase I/II study investigated the safety and efficacy of epratuzumab, a humanised anti-CD22 monoclonal antibody, in the treatment of patients with active primary Sjögren's syndrome (pSS). Sixteen Caucasian patients (14 females/2 males, 33–72 years) were to receive 4 infusions of 360 mg/m(2 )epratuzumab once every 2 weeks, with 6 months of follow-up. A composite endpoint involving the Schirmer-I test, unstimulated whole salivary flow, fatigue, erythrocyte sedimentation rate (ESR), and immunoglobulin G (IgG) was devised to provide a clinically meaningful assessment of response, defined as a ≥20% improvement in at least two of the aforementioned parameters, with ≥20% reduction in ESR and/or IgG considered as a single combined criterion. Fourteen patients received all infusions without significant reactions, 1 patient received 3, and another was discontinued due to a mild acute reaction after receiving a partial infusion. Three patients showed moderately elevated levels of Human anti-human (epratuzumab) antibody not associated with clinical manifestations. B-cell levels had mean reductions of 54% and 39% at 6 and 18 weeks, respectively, but T-cell levels, immunoglobulins, and routine safety laboratory tests did not change significantly. Fifty-three percent achieved a clinical response (at ≥20% improvement level) at 6 weeks, with 53%, 47%, and 67% responding at 10, 18, and 32 weeks, respectively. Approximately 40%–50% responded at the ≥30% level, while 10%–45% responded at the ≥50% level for 10–32 weeks. Additionally, statistically significant improvements were observed in fatigue, and patient and physician global assessments. Further, we determined that pSS patients have a CD22 over-expression in their peripheral B cells, which was downregulated by epratuzumab for at least 12 weeks after the therapy. Thus, epratuzumab appears to be a promising therapy in active pSS, suggesting that further studies be conducted

    Origin and evolution of water oxidation before the last common ancestor of the Cyanobacteria

    Get PDF
    Photosystem II, the water oxidizing enzyme, altered the course of evolution by filling the atmosphere with oxygen. Here, we reconstruct the origin and evolution of water oxidation at an unprecedented level of detail by studying the phylogeny of all D1 subunits, the main protein coordinating the water oxidizing cluster (Mn4CaO5) of Photosystem II. We show that D1 exists in several forms making well-defined clades, some of which could have evolved before the origin of water oxidation and presenting many atypical characteristics. The most ancient form is found in the genome of Gloeobacter kilaueensis JS-1 and this has a C-terminus with a higher sequence identity to D2 than to any other D1. Two other groups of early evolving D1 correspond to those expressed under prolonged far-red illumination and in darkness. These atypical D1 forms are characterized by a dramatically different Mn4CaO5 binding site and a Photosystem II containing such a site may assemble an unconventional metal cluster. The first D1 forms with a full set of ligands to the Mn4CaO5 cluster are grouped with D1 proteins expressed only under low oxygen concentrations and the latest evolving form is the dominant type of D1 found in all cyanobacteria and plastids. In addition, we show that the plastid ancestor had a D1 more similar to those in early branching Synechococcus. We suggest each one of these forms of D1 originated from transitional forms at different stages towards the innovation and optimization of water oxidation before the last common ancestor of all known cyanobacteria

    90Y-clivatuzumab tetraxetan with or without low-dose gemcitabine: A phase Ib study in patients with metastatic pancreatic cancer after two or more prior therapies

    Get PDF
    AbstractBackgroundFor patients with metastatic pancreatic adenocarcinoma, there are no approved or established treatments beyond the 2nd line. A Phase Ib study of fractionated radioimmunotherapy was undertaken in this setting, administering 90Y-clivatuzumab tetraxetan (yttrium-90-radiolabelled humanised antibody targeting pancreatic adenocarcinoma mucin) with or without low radiosensitising doses of gemcitabine.MethodsFifty-eight patients with three (2–7) median prior treatments were treated on Arm A (N=29, 90Y-clivatuzumab tetraxetan, weekly 6.5mCi/m2doses×3, plus gemcitabine, weekly 200mg/m2 doses×4 starting 1week earlier) or Arm B (N=29, 90Y-clivatuzumab tetraxetan alone, weekly 6.5mCi/m2doses×3), repeating cycles after 4-week delays. Safety was the primary endpoint; efficacy was also evaluated.ResultsCytopaenias (predominantly transient thrombocytopenia) were the only significant toxicities. Fifty-three patients (27 Arm A, 26 Arm B, 91% overall) completed ⩾1 full treatment cycles, with 23 (12 Arm A, 11 Arm B; 40%) receiving multiple cycles, including seven (6 Arm A, 1 Arm B; 12%) given 3–9 cycles. Two patients in Arm A had partial responses by RECIST criteria. Kaplan–Meier overall survival (OS) appeared improved in Arm A versus B (hazard ratio [HR] 0.55, 95% CI: 0.29–0.86; P=0.017, log-rank) and the median OS for Arm A versus Arm B increased to 7.9 versus 3.4months with multiple cycles (HR 0.32, P=0.004), including three patients in Arm A surviving >1year.ConclusionsClinical studies of 90Y-clivatuzumab tetraxetan combined with low-dose gemcitabine appear feasible in metastatic pancreatic cancer patients beyond 2nd line and a Phase III trial of this combination is now underway in this setting

    In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer

    Get PDF
    The Laser Ranging Interferometer (LRI) instrument on the Gravity Recovery and Climate Experiment (GRACE) Follow-On mission has provided the first laser interferometric range measurements between remote spacecraft, separated by approximately 220 km. Autonomous controls that lock the laser frequency to a cavity reference and establish the 5 degrees of freedom two-way laser link between remote spacecraft succeeded on the first attempt. Active beam pointing based on differential wave front sensing compensates spacecraft attitude fluctuations. The LRI has operated continuously without breaks in phase tracking for more than 50 days, and has shown biased range measurements similar to the primary ranging instrument based on microwaves, but with much less noise at a level of 1 nm/Hz at Fourier frequencies above 100 mHz. © 2019 authors. Published by the American Physical Society

    Fractionated radioimmunotherapy with 90Y-clivatuzumab tetraxetan and low-dose gemcitabine is active in advanced pancreatic cancer: A phase 1 trial

    Get PDF
    It has been demonstrated that the humanized clivatuzumab tetraxetan (hPAM4) antibody targets pancreatic ductal carcinoma selectively. After a trial of radioimmunotherapy that determined the maximum tolerated dose of single-dose yttrium-90-labeled hPAM4 (90Y-hPAM4) and produced objective responses in patients with advanced pancreatic ductal carcinoma, the authors studied fractionated radioimmunotherapy combined with low-dose gemcitabine in this disease

    Multicentre evaluation of MRI variability in the quantification of infarct size in experimental focal cerebral ischaemia

    Get PDF
    Ischaemic stroke is a leading cause of death and disability in the developed world. Despite that considerable advances in experimental research enabled understanding of the pathophysiology of the disease and identified hundreds of potential neuroprotective drugs for treatment, no such drug has shown efficacy in humans. The failure in the translation from bench to bedside has been partially attributed to the poor quality and rigour of animal studies. Recently, it has been suggested that multicentre animal studies imitating the design of randomised clinical trials could improve the translation of experimental research. Magnetic resonance imaging (MRI) could be pivotal in such studies due to its non-invasive nature and its high sensitivity to ischaemic lesions, but its accuracy and concordance across centres has not yet been evaluated. This thesis focussed on the use of MRI for the assessment of late infarct size, the primary outcome used in stroke models. Initially, a systematic review revealed that a plethora of imaging protocols and data analysis methods are used for this purpose. Using meta-analysis techniques, it was determined that T2-weighted imaging (T2WI) was best correlated with gold standard histology for the measurement of infarctbased treatment effects. Then, geometric accuracy in six different preclinical MRI scanners was assessed using structural phantoms and automated data analysis tools developed in-house. It was found that geometric accuracy varies between scanners, particularly when centre-specific T2WI protocols are used instead of a standardised protocol, though longitudinal stability over six months is high. Finally, a simulation study suggested that the measured geometric errors and the different protocols are sufficient to render infarct volumes and related group comparisons across centres incomparable. The variability increases when both factors are taken into account and when infarct volume is expressed as a relative estimate. Data in this study were analysed using a custom-made semi-automated tool that was faster and more reliable in repeated analyses than manual analysis. Findings of this thesis support the implementation of standardised methods for the assessment and optimisation of geometric accuracy in MRI scanners, as well as image acquisition and analysis of in vivo data for the measurement of infarct size in multicentre animal studies. Tools and techniques developed as part of the thesis show great promise in the analysis of phantom and in vivo data and could be a step towards this endeavour

    Anglo-Dutch Premium Auctions in Eighteenth-Century Amsterdam

    Full text link

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore