88 research outputs found

    Power Spectra in V-band and Halpha of Nine Irregular Galaxies

    Full text link
    Fourier transform power spectra of major axis cuts in V and Halpha images were made for a sample of 9 irregular galaxies. These power spectra reveal structure over a wide range of scales. For 6 of the galaxies the power spectrum slopes at intermediate scales (1-400 pc) in the V-band images range from -1.3 to -1.5. The similarity of slopes suggests that the same processes are structuring these systems. These slopes are slightly shallower than what is observed in other galaxies in HI, molecular emission, dust extinction, and optical light. Three of the galaxies have flat power spectra like noise from the sky; these three galaxies are relatively indistinct in the direct images. The power spectrum slope for Halpha steepens with increasing star formation rate, ranging from a shallow value comparable to the noise at low rates to a steep value with a slope of -1.5 at high rates. This change reflects the increasing areal filling factor of Halpha emission with increasing star formation rate, and an apparently universal slope inside the Halpha regions that is comparable to that for Kolmogorov turbulence. The power spectrum of HI in one galaxy has a steeper power law, with a slope of -2.9. The fact that the power laws of star formation are about the same for dwarf galaxies and giant spiral galaxies suggests the microscopic processes are the same, independent of spiral density waves and galaxy size.Comment: To be published in AJ, May 200

    Galaxy Zoo: the effect of bar-driven fuelling on the presence of an active galactic nucleus in disc galaxies

    Get PDF
    We study the influence of the presence of a strong bar in disc galaxies which host an active galactic nucleus (AGN). Using data from the Sloan Digital Sky Survey and morphological classifications from the Galaxy Zoo 2 project, we create a volume-limited sample of 19756 disc galaxies at 0.01<z<0.05 which have been visually examined for the presence of a bar. Within this sample, AGN host galaxies have a higher overall percentage of bars (51.8 per cent) than inactive galaxies exhibiting central star formation (37.1 per cent). This difference is primarily due to known effects: that the presence of both AGN and galactic bars is strongly correlated with both the stellar mass and integrated colour of the host galaxy. We control for this effect by examining the difference in AGN fraction between barred and unbarred galaxies in fixed bins of mass and colour. Once this effect is accounted for, there remains a small but statistically significant increase that represents 16 per cent of the average barred AGN fraction. Using the L[O iii]L_{\rm {[O\,{\small {iii}}]}}/MBH ratio as a measure of AGN strength, we show that barred AGNs do not exhibit stronger accretion than unbarred AGNs at a fixed mass and colour. The data are consistent with a model in which bar-driven fuelling does contribute to the probability of an actively growing black hole, but in which other dynamical mechanisms must contribute to the direct AGN fuelling via smaller, non-axisymmetric perturbation

    Galaxy Zoo: comparing the demographics of spiral arm number and a new method for correcting redshift bias

    Get PDF
    The majority of galaxies in the local Universe exhibit spiral structure with a variety of forms. Many galaxies possess two prominent spiral arms, some have more, while others display a many-armed flocculent appearance. Spiral arms are associated with enhanced gas content and star formation in the discs of low-redshift galaxies, so are important in the understanding of star formation in the local universe. As both the visual appearance of spiral structure, and the mechanisms responsible for it vary from galaxy to galaxy, a reliable method for defining spiral samples with different visual morphologies is required. In this paper, we develop a new debiasing method to reliably correct for redshift-dependent bias in Galaxy Zoo 2, and release the new set of debiased classifications. Using these, a luminosity-limited sample of ∼18 000 Sloan Digital Sky Survey spiral galaxies is defined, which are then further sub-categorized by spiral arm number. In order to explore how different spiral galaxies form, the demographics of spiral galaxies with different spiral arm numbers are compared. It is found that whilst all spiral galaxies occupy similar ranges of stellar mass and environment, many-armed galaxies display much bluer colours than their two-armed counterparts. We conclude that two-armed structure is ubiquitous in star-forming discs, whereas many-armed spiral structure appears to be a short-lived phase, associated with more recent, stochastic star-formation activity

    Stellar populations of barred quiescent galaxies

    Get PDF
    International audienceSelecting centrally quiescent galaxies from the Sloan Digital Sky Survey (SDSS) to create high signal-to-noise ratio (greater than or similar to 100 angstrom(-1)) stacked spectra with minimal emission-line contamination, we accurately and precisely model the central stellar populations of barred and unbarred quiescent disk galaxies. By splitting our sample by redshift, we can use the fixed size of the SDSS fiber to model the stellar populations at different radii within galaxies. At 0.02 \textless z \textless 0.04, the SDSS fiber radius corresponds to approximate to 1 kpc, which is the typical half-light radii of both classical bulges and disky pseudobulges. Assuming that the SDSS fiber primarily covers the bulges at these redshifts, our analysis shows that there are no significant differences in the stellar populations, i.e., stellar age, [Fe/H], [Mg/Fe], and [N/Fe], of the bulges of barred versus unbarred quiescent disk galaxies. Modeling the stellar populations at different redshift intervals from z = 0.020 to z = 0.085 at fixed stellar masses produces an estimate of the stellar population gradients out to about half the typical effective radius of our sample, assuming null evolution over this approximate to 1 Gyr epoch. We find that there are no noticeable differences in the slopes of the azimuthally averaged gradients of barred versus unbarred quiescent disk galaxies. These results suggest that bars are not a strong influence on the chemical evolution of quiescent disk galaxies

    Galaxy Zoo: Are Bars Responsible for the Feeding of Active Galactic Nuclei at 0.2 < z < 1.0?

    Get PDF
    We present a new study investigating whether active galactic nuclei (AGN) beyond the local universe are preferentially fed via large-scale bars. Our investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS, COSMOS, and GOODS-S surveys to create samples of face-on, disc galaxies at 0.2 < z < 1.0. We use a novel method to robustly compare a sample of 120 AGN host galaxies, defined to have 10^42 erg/s < L_X < 10^44 erg/s, with inactive control galaxies matched in stellar mass, rest-frame colour, size, Sersic index, and redshift. Using the GZH bar classifications of each sample, we demonstrate that AGN hosts show no statistically significant enhancement in bar fraction or average bar likelihood compared to closely-matched inactive galaxies. In detail, we find that the AGN bar fraction cannot be enhanced above the control bar fraction by more than a factor of two, at 99.7% confidence. We similarly find no significant difference in the AGN fraction among barred and non-barred galaxies. Thus we find no compelling evidence that large-scale bars directly fuel AGN at 0.2<z<1.0. This result, coupled with previous results at z=0, implies that moderate-luminosity AGN have not been preferentially fed by large-scale bars since z=1. Furthermore, given the low bar fractions at z>1, our findings suggest that large-scale bars have likely never directly been a dominant fueling mechanism for supermassive black hole growth.Comment: 13 pages, 5 figures, 2 tables, accepted by MNRA

    Spitzer mid-infrared spectroscopy of compact symmetric objects: What powers radio-loud active galactic nuclei?

    Full text link
    We present low- and high-resolution mid-infrared (mid-IR) spectra and photometry for eight compact symmetric objects (CSOs) taken with the Infrared Spectrograph on the Spitzer Space Telescope. The hosts of these young, powerful radio galaxies show significant diversity in their mid-IR spectra. This includes multiple atomic fine-structure lines, H2 gas, polycyclic aromatic hydrocarbon (PAH) emission, warm dust from T = 50 to 150 K, and silicate features in both emission and absorption. There is no evidence in the mid-IR of a single template for CSO hosts, but 5/8 galaxies show similar moderate levels of star formation (<10 M_sun/yr from PAH emission) and silicate dust in a clumpy torus. The total amount of extinction ranges from A_V ~ 10 to 30, and the high-ionization [Ne V] 14.3 and 24.3 um transitions are not detected for any galaxy in the sample. Almost all CSOs show contributions both from star formation and active galactic nuclei (AGNs), suggesting that they occupy a continuum between pure starbursts and AGNs. This is consistent with the hypothesis that radio galaxies are created following a galactic merger; the timing of the radio activity onset means that contributions to the IR luminosity from both merger-induced star formation and the central AGN are likely. Bondi accretion is capable of powering the radio jets for almost all CSOs in the sample; the lack of [Ne V] emission suggests an advection-dominated accretion flow mode as a possible candidate. Merging black holes (BHs) with M_BH > 10^8 M_sun likely exist in all of the CSOs in the sample; however, there is no direct evidence from these data that BH spin energy is being tapped as an alternative mode for powering the radio jets.Comment: 22 pages, 14 figures; published in Ap

    Mid-infrared properties of OH megamaser host galaxies. I: Spitzer IRS low- and high-resolution spectroscopy

    Get PDF
    We present mid-infrared spectra and photometry from the Infrared Spectrograph on the Spitzer Space Telescope for 51 OH megamasers (OHMs), along with 15 galaxies confirmed to have no megamaser emission above L_OH = 10^2.3 L_sun. The majority of galaxies display moderate-to-deep 9.7 um amorphous silicate absorption, with OHM galaxies showing stronger average absorption and steeper 20-30 um continuum emission than non-masing galaxies. Emission from multiple polycyclic aromatic hydrocarbons (PAHs), especially at 6.2, 7.7, and 11.3 um, is detected in almost all systems. Fine-structure atomic emission (including [Ne II], [Ne III], [S III], and [S IV]) and multiple H2 rotational transitions are observed in more than 90% of the sample. A subset of galaxies show emission from rarer atomic lines, such as [Ne V], [O IV], and [Fe II]. 50% of the OHMs show absorption from water ice and hydrogenated amorphous carbon grains (HACs), while absorption features from CO2, HCN, C2H2, and crystalline silicates are also seen in several OHMs. Column densities of OH derived from 34.6 um OH absorption are similar to those derived from 1667 MHz OH absorption in non-masing galaxies, indicating that the abundance of masing molecules is similar for both samples. This data paper presents full mid-infrared spectra for each galaxy, along with measurements of line fluxes and equivalent widths, absorption feature depths, and spectral indices.Comment: 28 pages, 10 figures; accepted to ApJS. Ancillary data includes full IRS spectra of the complete sampl

    Mid-infrared properties of OH megamaser host galaxies. II: Analysis and modeling of the maser environment

    Get PDF
    We present a comparison of Spitzer IRS data for 51 OH megamaser (OHM) hosts and 15 non-masing ULIRGs. 10-25% of OHMs show evidence for the presence of an AGN, significantly lower than the estimated AGN fraction from previous optical and radio studies. Non-masing ULIRGs have a higher AGN fraction (50-95%) than OHMs, although some galaxies in both samples show evidence of co-existing starbursts and AGN. Radiative transfer models of the dust environment reveal that non-masing galaxies tend to have clumpy dust geometries commonly associated with AGN, while OHMs have deeper absorption consistent with a smooth, thick dust shell. Statistical analyses show that the major differences between masing and non-masing ULIRGs in the mid-IR relate to the optical depth and dust temperature, which we measure using the 9.7 um silicate depth and 30-20 um spectral slope from the IRS data. Dust temperatures of 40-80 K derived from the IRS data are consistent with predictions of OH pumping models and with a minimum T_dust required for maser production. The best-fit dust opacities ({\tau}_V ~ 100 - 400), however, are nearly an order of magnitude larger than those predicted for OH inversion, and suggest that modifications to the model may be required. These diagnostics offer the first detailed test of an OHM pumping model based only on the properties of its host galaxy and provide important restrictions on the physical conditions relevant to OHM production.Comment: 15 pages, 12 figures; accepted to Ap
    • …
    corecore