2,192 research outputs found

    Progressive loss of CD3 expression after HTLV-I infection results from chromatin remodeling affecting all the CD3 genes and persists despite early viral genes silencing

    Get PDF
    BACKGROUND: HTLV-I infected CD4+ T-cells lines usually progress towards a CD3- or CD3low phenotype. In this paper, we studied expression, kinetics, chromatin remodeling of the CD3 gene at different time-points post HTLV-I infection. RESULTS: The onset of this phenomenon coincided with a decrease of CD3gamma followed by the subsequent progressive reduction in CD3delta, then CD3epsilon and CD3zeta mRNA. Transient transfection experiments showed that the CD3gamma promoter was still active in CD3- HTLV-I infected cells demonstrating that adequate amounts of the required transcription factors were available. We next looked at whether epigenetic mechanisms could be responsible for this progressive decrease in CD3 expression using DNase I hypersensitivity (DHS) experiments examining the CD3gamma and CD3delta promoters and the CD3delta enhancer. In uninfected and cells immediately post-infection all three DHS sites were open, then the CD3gamma promoter became non accessible, and this was followed by a sequential closure of all the DHS sites corresponding to all three transcriptional control regions. Furthermore, a continuous decrease of in vivo bound transcription initiation factors to the CD3gamma promoter was observed after silencing of the viral genome. Coincidently, cells with a lower expression of CD3 grew more rapidly. CONCLUSION: We conclude that HTLV-I infection initiates a process leading to a complete loss of CD3 membrane expression by an epigenetic mechanism which continues along time, despite an early silencing of the viral genome. Whether CD3 progressive loss is an epiphenomenon or a causal event in the process of eventual malignant transformation remains to be investigated.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    RNA based approaches to profile oncogenic pathways from low quantity samples to drive precision oncology strategies

    Get PDF
    Precision treatment of cancer requires knowledge on active tumor driving signal transduction pathways to select the optimal effective targeted treatment. Currently only a subset of patients derive clinical benefit from mutation based targeted treatment, due to intrinsic and acquired drug resistance mechanisms. Phenotypic assays to identify the tumor driving pathway based on protein analysis are difficult to multiplex on routine pathology samples. In contrast, the transcriptome contains information on signaling pathway activity and can complement genomic analyses. Here we present the validation and clinical application of a new knowledge-based mRNA-based diagnostic assay platform (OncoSignal) for measuring activity of relevant signaling pathways simultaneously and quantitatively with high resolution in tissue samples and circulating tumor cells, specifically with very small specimen quantities. The approach uses mRNA levels of a pathway\u27s direct target genes, selected based on literature for multiple proof points, and used as evidence that a pathway is functionally activated. Using these validated target genes, a Bayesian network model has been built and calibrated on mRNA measurements of samples with known pathway status, which is used next to calculate a pathway activity score on individual test samples. Translation to RT-qPCR assays enables broad clinical diagnostic applications, including small analytes. A large number of cancer samples have been analyzed across a variety of cancer histologies and benchmarked across normal controls. Assays have been used to characterize cell types in the cancer cell microenvironment, including immune cells in which activated and immunotolerant states can be distinguished. Results support the expectation that the assays provide information on cancer driving signaling pathways which is difficult to derive from next generation DNA sequencing analysis. Current clinical oncology applications have been complementary to genomic mutation analysis to improve precision medicine: (1) prediction of response and resistance to various therapies, especially targeted therapy and immunotherapy; (2) assessment and monitoring of therapy efficacy; (3) prediction of invasive cancer cell behavior and prognosis; (4) measurement of circulating tumor cells. Preclinical oncology applications lie in a better understanding of cancer behavior across cancer types, and in development of a pathophysiology-based cancer classification for development of novel therapies and precision medicine

    Tumor-infiltrating lymphocytes in patients receiving trastuzumab/pertuzumab-based chemotherapy : a TRYPHAENA Substudy

    Get PDF
    Background: There is an urgent requirement to identify biomarkers to tailor treatment in human epidermal growth factor receptor 2 (HER2)-amplified early breast cancer treated with trastuzumab/pertuzumab-based chemotherapy. Methods: Among the 225 patients randomly assigned to trastuzumab/pertuzumab concurrently or sequentially with an anthracycline-containing regimen or concurrently with an anthracycline-free regimen in the Tryphaena trial, we determined the percentage of tumor-infiltrating lymphocytes (TILs) at baseline in 213 patients, of which 126 demonstrated a pathological complete response (pCR; ypT0/is ypN0), with 28 demonstrating event-free survival (EFS) events. We investigated associations between baseline TIL percentage and either pCR or EFS after adjusting for clinicopathological characteristics using logistic and Cox regression models, respectively. To understand TIL biology, we evaluated associations between baseline TILs and baseline tumor gene expression data (800 gene set by NanoString) in a subset of 173 patients. All statistical tests were two-sided. Results: Among the patients with measurable TILs at baseline, the median level was 14.1% (interquartile range = 7.1%-32.4%). After adjusting for clinicopathological characteristics, baseline percentage TIL was not associated with pCR (adjusted odds ratio [aOR] for every 10-percentage unit increase in TILs = 1.12, 95% confidence interval [CI] = 0.95 to 1.31, P = .17). At a median follow-up of 4.7 years, for every increase in baseline TILs of 10%, there was a 25% reduction in the hazard for an EFS event (aOR = 0.75, 95% CI = 0.56 to 1.00, P = .05) after adjusting for baseline clinicopathological characteristics and pCR. Additionally, genes associated with epithelial-mesenchymal transition, angiogenesis, and T-cell inhibition such as SNAIL1, ZEB1, NOTCH3, and B7-H3 were statistically significantly inversely correlated with percentage TIL. Conclusions: Baseline TIL percentage provides independent prognostic information in patients treated with trastuzumab/pertuzumab-based neoadjuvant chemotherapy. However, further validation is required

    Subcellular rearrangement of Hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth

    Get PDF
    FKBP51 and FKBP52 (FK506-binding protein 51 and 52) are tetratricopeptide repeat-domain immunophilins belonging to the tetratricopeptide-protein•hsp90•hsp70•p23 heterocomplex bound to steroid receptors. Immunophilins are related to receptor folding, subcellular localization, and hormone-dependent transcription. Also, they bind the immunosuppressant macrolide FK506, which shows neuroregenerative and neuroprotective actions by a still unknown mechanism. In this study, we demonstrate that in both, undifferentiated neuroblastoma cells and embryonic hippocampal neurons, the FKBP52•hsp90•p23 heterocomplex concentrates in a perinuclear structure. Upon cell stimulation with FK506, this structure disassembles and this perinuclear area becomes transcriptionally active. The acquisition of a neuronal phenotype is accompanied by increased expression of βIII-tubulin, Map-2, Tau-1, but also hsp90, hsp70, p23, and FKBP52. During the early differentiation steps, the perinuclear heterocomplex redistributes along the cytoplasm and nascent neurites, p23 binds to intermediate filaments and microtubules acquired higher filamentary organization. While FKBP52 moves towards neurites and concentrates in arborization bodies and terminal axons, FKBP51, whose expression remains constant, replaces FKBP52 in the perinuclear structure. Importantly, neurite outgrowth is favored by FKBP52 over-expression or FKBP51 knock-down, and is impaired by FKBP52 knock-down or FKBP51 over-expression, indicating that the balance between these FK506-binding proteins plays a key role during the early mechanism of neuronal differentiation.Fil: Quintá, Héctor Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; ArgentinaFil: Maschi, Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; ArgentinaFil: Gomez Sanchez, Celso. University of Mississippi; Estados Unidos. G. V. (Sonny) Montgomery VA Medical Center; Estados UnidosFil: Piwien Pilipuk, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; ArgentinaFil: Galigniana, Mario Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentin

    Modifications in host cell cytoskeleton structure and function mediated by intracellular HIV-1 Tat protein are greatly dependent on the second coding exon

    Get PDF
    Supplementary Data are available at NAR OnlineThe human immunodeficiency virus type 1 (HIV-1) regulator Tat is essential for viral replication because it achieves complete elongation of viral transcripts. Tat can be released to the extracellular space and taken up by adjacent cells, exerting profound cytoskeleton rearrangements that lead to apoptosis. In contrast, intracellular Tat has been described as protector from apoptosis. Tat gene is composed by two coding exons that yield a protein of 101 amino acids (aa). First exon (1–72aa) is sufficient for viral transcript elongation and second exon (73–101 aa) appears to contribute to non-transcriptional functions. We observed that Jurkat cells stably expressing intracellular Tat101 showed gene expression deregulation 4-fold higher than cells expressing Tat72. Functional experiments were performed to evaluate the effect of this deregulation. First, NF-iB-, NF-AT- and Sp1-dependent transcriptional activities were greatly enhanced in Jurkat-Tat101, whereas Tat72 induced milder but efficient activation. Second, cytoskeleton-related functions as cell morphology, proliferation, chemotaxis, polarization and actin polymerization were deeply altered in Jurkat- Tat101, but not in Jurkat-Tat72. Finally, expression of several cell surface receptors was dramatically impaired by intracellular Tat101 but not by Tat72. Consequently, these modifications were greatly dependent on Tat second exon and they could be related to the anergy observed in HIV-1-infected T cells.Plan Nacional del SIDA (MVI 1434/05–5), FIPSE 36584/ 06 and 36633/07, VIRHORST Network from Comunidad de Madrid (Spain), FIS PI040614 and PI0808752, ISCIII-RETIC RD06/0006, EUROPRISE Network of Excellence of the EU (Grant no. LSHP CT-2006- 037611), and BIO2008-04384 from the Ministerio de Ciencia e Innovacio´ n, Espan˜ a. Funding for open access charge: Instituto de Salud Carlos III, Ministry of Science and Technology, Spain.Peer reviewe

    The tale of TILs in breast cancer : a report from The International Immuno-Oncology Biomarker Working Group

    Get PDF
    The advent of immune-checkpoint inhibitors (ICI) in modern oncology has significantly improved survival in several cancer settings. A subgroup of women with breast cancer (BC) has immunogenic infiltration of lymphocytes with expression of programmed death-ligand 1 (PD-L1). These patients may potentially benefit from ICI targeting the programmed death 1 (PD-1)/PD-L1 signaling axis. The use of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarkers has been under intense examination. Emerging data suggest that TILs are associated with response to both cytotoxic treatments and immunotherapy, particularly for patients with triple-negative BC. In this review from The International Immuno-Oncology Biomarker Working Group, we discuss (a) the biological understanding of TILs, (b) their analytical and clinical validity and efforts toward the clinical utility in BC, and (c) the current status of PD-L1 and TIL testing across different continents, including experiences from low-to-middle-income countries, incorporating also the view of a patient advocate. This information will help set the stage for future approaches to optimize the understanding and clinical utilization of TIL analysis in patients with BC

    Levels of different subtypes of tumour-infiltrating lymphocytes correlate with each other, with matched circulating lymphocytes, and with survival in breast cancer

    Get PDF
    Purpose: Breast cancer tumour-infiltrating lymphocytes associate with clinico-pathological factors, including survival, although the literature includes many conflicting findings. Our aim was to assess these associations for key lymphocyte subtypes and in different tumour compartments, to determine whether these provide differential correlations and could, therefore, explain published inconsistencies. Uniquely, we also examine whether infiltrating levels merely reflect systemic lymphocyte levels or whether local factors are predominant in recruitment. Methods: Immunohistochemistry was used to detect tumour-infiltrating CD20+ (B), CD4+ (helper T), CD8+ (cytotoxic T) and FoxP3+ (regulatory T) cells in breast cancers from 62 patients, with quantification in tumour stroma, tumour cell nests, and tumour margins. Levels were analysed with respect to clinico-pathological characteristics and matched circulating levels (determined by flow-cytometry). Results: CD4+ lymphocytes were the most prevalent subtype in tumour stroma and at tumour edge and CD8+ lymphocytes were most prevalent in tumour nests; FoxP3+ lymphocytes were rarest in all compartments. High grade or hormone receptor negative tumours generally had significantly increased lymphocytes, especially in tumour stroma. Only intra-tumoural levels of CD8+ lymphocytes correlated significantly with matched circulating levels (p < 0.03), suggesting that recruitment is mainly unrelated to systemic activity. High levels of stromal CD4+ and CD20+ cells associated with improved survival in hormone receptor negative cases (p < 0.04), while tumour nest CD8+ and FoxP3+ cells associated with poor survival in hormone receptor positives (p < 0.005). Conclusions: Lymphocyte subtype and location define differential impacts on tumour biology, therefore, roles of tumour-infiltrating lymphocytes will only be unravelled through thorough analyses that take this into account
    corecore