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of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States, 11 Department
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Precision treatment of cancer requires knowledge on active tumor driving signal
transduction pathways to select the optimal effective targeted treatment. Currently only
a subset of patients derive clinical benefit from mutation based targeted treatment,
due to intrinsic and acquired drug resistance mechanisms. Phenotypic assays to
identify the tumor driving pathway based on protein analysis are difficult to multiplex
on routine pathology samples. In contrast, the transcriptome contains information on
signaling pathway activity and can complement genomic analyses. Here we present the
validation and clinical application of a new knowledge-based mRNA-based diagnostic
assay platform (OncoSignal) for measuring activity of relevant signaling pathways
simultaneously and quantitatively with high resolution in tissue samples and circulating
tumor cells, specifically with very small specimen quantities. The approach uses mRNA
levels of a pathway’s direct target genes, selected based on literature for multiple proof
points, and used as evidence that a pathway is functionally activated. Using these
validated target genes, a Bayesian network model has been built and calibrated on
mRNA measurements of samples with known pathway status, which is used next to
calculate a pathway activity score on individual test samples. Translation to RT-qPCR
assays enables broad clinical diagnostic applications, including small analytes. A large
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number of cancer samples have been analyzed across a variety of cancer histologies
and benchmarked across normal controls. Assays have been used to characterize cell
types in the cancer cell microenvironment, including immune cells in which activated
and immunotolerant states can be distinguished. Results support the expectation that
the assays provide information on cancer driving signaling pathways which is difficult
to derive from next generation DNA sequencing analysis. Current clinical oncology
applications have been complementary to genomic mutation analysis to improve
precision medicine: (1) prediction of response and resistance to various therapies,
especially targeted therapy and immunotherapy; (2) assessment and monitoring of
therapy efficacy; (3) prediction of invasive cancer cell behavior and prognosis; (4)
measurement of circulating tumor cells. Preclinical oncology applications lie in a better
understanding of cancer behavior across cancer types, and in development of a
pathophysiology-based cancer classification for development of novel therapies and
precision medicine.

Keywords: oncology precision medicine, treatment prediction, signaling pathway activity, mRNA profiling, low
input analytes

INTRODUCTION

Cellular mechanisms of cancer can be described in terms of
abnormal activity of a discrete number of signal transduction
pathways that control crucial cellular functions and play
important roles in both physiology (e.g., embryonic
development, immune response) and pathophysiology.
They can be categorized as hormone driven pathways [e.g.,
estrogen receptor (ER), androgen receptor (AR), progesterone
receptor (PR), and glucocorticoid receptor (GR) pathways],
growth factor pathways (e.g., PI3K, MAPK-AP1, JAK-STAT1/2
and JAK-STAT3), the inflammatory pathway (NFκB), and
developmental pathways [e.g., Wnt, Hedgehog (HH), TGFβ, and
Notch pathways].

Signal transduction pathways drive tumor growth and
metastasis, either as a single active pathway (e.g., the ER
pathway in luminal A breast cancer) or through cooperation or
crosstalk between signaling pathways (e.g., the MAPK and TGFβ

pathways) (Sundqvist et al., 2013). Abnormal pathways are at
the core of cancer pathophysiology and are frequently caused
by molecular aberrations in the cancer genome in interaction
with the cancer cell microenvironment (Hanahan and Weinberg,
2011; Bose et al., 2013). Signaling pathway activity can either
be increased to drive growth or metastasis of a tumor, as is
frequently the case for the PI3K pathway, or decreased in case of
a signaling pathway that normally serves as a tumor suppressor.
Some pathways, such as the TGFβ pathway, can exert tumor
promoting and suppressive effects depending on the cancer
type. A drug can either target the signal transduction pathway
at the receptor, for example trastuzumab to target the HER2
receptor, or at downstream nodes, for example a PI3K inhibitor
to target the PIK3CA signaling molecule or everolimus targeting
the mTOR protein (Baudino, 2015; Sieuwerts et al., 2020). Many
targeted drugs, such as those which target the ER, PI3K and
MAPK signaling pathways, have been clinically approved based
on evidence of clinical benefit and are being used to treat various

cancer types (Massard et al., 2017; Dugger et al., 2018; Marquart
et al., 2018; National Cancer Institute, 2021). Emerging evidence
suggests that activity of specific signaling pathways are involved
in response and resistance to a variety of therapies including
targeted therapy, immunotherapy, and chemotherapy.

A MAJOR CHALLENGE IN ONCOLOGY
DIAGNOSTICS AND TREATMENT
DECISIONS: IDENTIFICATION OF THE
TUMOR DRIVING SIGNALING PATHWAY
ACTIVITY IN CANCER

Traditionally, the selection of targeted drugs has been based
in immunohistochemistry (IHC, i.e., staining for ER, PR
and HER2 protein expression in breast cancer) and can be
applied to formalin fixed paraffin embedded (FFPE) tissue
samples. IHC staining is currently semi-quantitative, however,
and multiplexing staining remains a major challenge. Correct
normalization of staining signals can be inconsistent, and sample
preparation and staining protocols can vary substantially among
pathology departments. Expression levels of signaling proteins do
not provide information on their functional activity and activity
of the associated signaling pathway (Hemert et al., 2020). The
presence of ER in the cell nucleus is required for ER pathway
activity, but ER expression alone is not sufficient as the estrogen
ligand is necessary to activate ER and consequently the ER
signaling pathway (Katzenellenbogen et al., 1993; Hemert et al.,
2020). This explains the variations in ER pathway activity in
an evenly distributed ER positive tumor (Yang et al., 2019;
Inda et al., 2020). The functional state of signaling proteins
can be determined by complex and dynamic alterations of the
protein structure, which require quantitative measurement of a
variety of post-translational modifications which affect protein
activity. Staining methods using antibodies that recognize a
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specific phosphorylation state of a protein have been investigated
extensively, but are not always sufficiently reliable (Mandell,
2008). Mass spectrometry proteomics approaches can be used to
measure post-translational modifications of a range of receptor,
signaling and transcription factor proteins (Mnatsakanyan et al.,
2018), but diagnostic applications can be complicated since the
analysis is limited to fresh frozen (FF) tissue samples and requires
a relatively large amount of tissue to obtain a reliable result.
An alternative means to measure activity of a signaling protein
is to provide a substrate to the protein to measure enzymatic
activity, but this method is similarly limited to fresh frozen,
non-denatured samples (Shi et al., 2018). Directly measuring
transcription factor activity is even more complex and requires
fresh cells or tissue (Browning et al., 2009). Protein analysis
approaches have been of limited help to measure the activation
state of a signaling pathway and as a method to predict
therapy response.

The availability of Next Generation Sequencing (NGS)
techniques has enabled identifying tumor-driving gene mutations
in many histologies of cancer. This has resulted in a number of
therapeutic successes, as evident from FDA approved companion
diagnostic assays based on identification of a specific gene
mutation to predict therapy response (FDA, 2020). FDA approval
was recently obtained for the use of the PI3K inhibitor drug
alpelisib in breast cancer patients with a PIK3CA mutation, based
on the results of the SOLAR-1 trial (André et al., 2019). Other
mutations may be clinically used independent of FDA approval,
for example activating mutations in the ESR1 gene coding for
the estrogen receptor and associated with resistance to hormonal
therapy (Jeselsohn et al., 2015). For many mutations in signaling
pathway-related genes, for example in the Notch genes, it remains
hard to establish the clinical relevance of the mutation. A clear
link between the mutation and activity of the corresponding
signaling pathway can often not be made reliably (Janku, 2017;
van de Stolpe, 2019; Martin et al., 2020). An important factor,
partially explaining this disappointing result, is that the cancer
cell phenotype is determined not only by genomic mutations, but
also by epigenetic dysregulations and by interactions with cells
in the tumor microenvironment, e.g., fibroblasts and a variety
of immune cells (Hanahan and Weinberg, 2011). This makes it
essential to measure functional signaling pathway activity in a
cancer tissue sample, while taking into account the challenge to
distinguish between the phenotypes of cancer cells and cell types
in the microenvironment.

MEASURING PHENOTYPIC SIGNALING
PATHWAY ACTIVITY IN A CANCER
TISSUE SAMPLE FROM mRNA
EXPRESSION

RNA-based methods to measure signaling pathway activity have
advanced during the past decade to provide information on
signaling pathway activity based on mRNA expression data of
a tumor sample. However, using mRNA expression levels as
a proxy for the presence of corresponding activated signaling
molecules or transcription factors can be inaccurate. First, mRNA

expression levels are unreliable indicators of corresponding
protein levels because their production and turnover rates are
frequently not matched. Second, signaling protein levels are in
general not related to the functional activity state of the protein,
which is determined by post-translational modifications, such
as specific phosphorylations. Nevertheless, mRNA expression
levels can provide information on activity of the transcription
factors that produce them, and indirectly on activity of signaling
pathways that lead to activation of such transcription factors.

A number of RNA-based pathway analysis tools are available,
such as Ingenuity Pathway Analysis (Qiagen), Gene Set
Enrichment Analysis (GSEA) (Subramanian et al., 2005) and
DAVID (Huang et al., 2009). They use pathway information
from databases such as KEGG1, and WikiPathways2. The term
“pathways” there usually refers to a variety of intracellular
molecular mechanisms, not specifically to activity of signal
transduction pathways (Subramanian et al., 2005; Huang et al.,
2009). These tools are mostly used to discover which “pathways”
differ between two groups of samples, by looking at the
differentially expressed genes between the two groups, and
identifying the “pathways” in which these differentially expressed
genes are overrepresented. A drawback of such methods is that
typically analysis starts unbiased, with thousands of “pathways”
being evaluated for their difference between the two groups
of samples. On the one hand, such a discovery setup may
be limited by testing corrections, while many findings may
emerge that are not reflections of the tumor driving pathway.
For instance, when comparing normal tissue to cancer tissue,
“pathways” involved in cell cycling may appear, and can signify
an effect rather than a driver. In addition, pathways known to
drive certain tumors in some cases may not be identified or
identified incorrectly. A GSEA experiment analyzing canonical
pathways between 32 colon adenoma vs. 32 normal colon
samples from GSE8671, shown in Table 1, failed to identify the
Wnt pathway as being upregulated in colon adenomas, while
it is known to be the first activated pathway in practically
all adenomas. The first occurrence of a Wnt pathway was on
position 257 of the result list, with a corrected p-value of 0.91.
Some Wnt pathways were reported to be up-regulated in the
normal samples instead of the adenomas. A major cause of such
findings is the inclusion of genes encoding for signaling proteins
in “pathways,” which are only very loosely coupled to protein
levels and activation.

Even if above pathway analysis approaches yield relevant
“pathways” that are differentially expressed, then a step is to
be made to translate them into a gene expression profile or a
classifier that can be applied on an individual test sample. This
requires a training step on samples with known ground truth
pathway status. Since many of these “pathway” gene sets have
been derived in a data-driven manner, one should be cautious
when applying them on test samples of a different nature than
the original discovery set. Data-driven discovery approaches are
difficult to properly assess functional activity of tumor-driving
pathways. Here we will present a novel approach that focuses

1www.kegg.jp
2www.wikipathways.org
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TABLE 1 | Results of a Gene Set Enrichment Analysis on 32 colon adenomas vs. 32 normal colon samples from GSE8671, using 1,502 canonical pathways from the
curated pathway database from MSigDB (c2/cp).

Up in Position Name nom.p fdr.q fwer.q

A

Adenoma 1 PID_FOXM1_PATHWAY 0.000 0.224 0.133

Adenoma 2 PID_AURORA_A_PATHWAY 0.000 0.211 0.222

Adenoma 3 REACTOME_CHROMOSOME_MAINTENANCE 0.000 0.193 0.262

Adenoma 4 KEGG_CELL_CYCLE 0.002 0.151 0.271

Adenoma 5 REACTOME_G2_M_CHECKPOINTS 0.002 0.141 0.303

Adenoma 6 REACTOME_CELLULAR_RESPONSE_TO_HEAT_STRESS 0.002 0.121 0.306

Adenoma 7 REACTOME_REGULATION_OF_TP53_ACTIVITY_THROUGH_PHOSPHORYLATION 0.000 0.105 0.312

Adenoma 8 PID_MYC_ACTIV_PATHWAY 0.000 0.093 0.314

Adenoma 9 REACTOME_CELL_CYCLE_CHECKPOINTS 0.002 0.083 0.314

Adenoma 10 REACTOME_REGULATION_OF_HSF1_MEDIATED_HEAT_SHOCK_RESPONSE 0.002 0.088 0.352

Adenoma 11 REACTOME_BASE_EXCISION_REPAIR 0.000 0.085 0.364

Adenoma 12 BIOCARTA_G2_PATHWAY 0.000 0.081 0.374

Adenoma 13 REACTOME_DNA_REPAIR 0.000 0.079 0.384

Adenoma 14 REACTOME_RHO_GTPASES_ACTIVATE_FORMINS 0.014 0.077 0.397

Adenoma 15 REACTOME_METABOLISM_OF_NUCLEOTIDES 0.000 0.072 0.397

Adenoma 16 REACTOME_REGULATION_OF_RAS_BY_GAPS 0.002 0.068 0.403

Adenoma 17 REACTOME_PROTEIN_FOLDING 0.002 0.065 0.409

Adenoma 18 SA_G1_AND_S_PHASES 0.002 0.063 0.412

Adenoma 19 REACTOME_TELOMERE_MAINTENANCE 0.000 0.061 0.419

Adenoma 20 REACTOME_TP53_REGULATES_TRANSCRIPTION_OF_GENES_INVOLVED_IN_G2_CELL_CYCLE_ARREST 0.000 0.059 0.421

B

Adenoma 125 REACTOME_DEGRADATION_OF_BETA_CATENIN_BY_THE_DESTRUCTION_COMPLEX 0.018 0.036 0.724

Adenoma 257 REACTOME_TCF_DEPENDENT_SIGNALING_IN_RESPONSE_TO_WNT 0.015 0.046 0.914

Adenoma 387 REACTOME_SIGNALING_BY_WNT 0.055 0.179 1.000

Adenoma 482 PID_BETA_CATENIN_DEG_PATHWAY 0.227 0.363 1.000

Adenoma 496 PID_BETA_CATENIN_NUC_PATHWAY 0.244 0.393 1.000

Adenoma 507 REACTOME_FORMATION_OF_THE_BETA_CATENIN_TCF_TRANSACTIVATING_COMPLEX 0.324 0.420 1.000

Adenoma 540 WNT_SIGNALING 0.330 0.463 1.000

Adenoma 546 KEGG_WNT_SIGNALING_PATHWAY 0.334 0.475 1.000

Adenoma 561 REACTOME_DEACTIVATION_OF_THE_BETA_CATENIN_TRANSACTIVATING_COMPLEX 0.405 0.483 1.000

Adenoma 568 BIOCARTA_WNT_PATHWAY 0.425 0.487 1.000

Adenoma 652 REACTOME_SIGNALING_BY_WNT_IN_CANCER 0.792 0.764 1.000

C

Normal 1 KEGG_NITROGEN_METABOLISM 0.000 0.178 0.095

Normal 2 KEGG_ALDOSTERONE_REGULATED_SODIUM_REABSORPTION 0.000 0.242 0.209

Normal 3 KEGG_PROXIMAL_TUBULE_BICARBONATE_RECLAMATION 0.006 0.216 0.263

Normal 4 KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 0.002 0.260 0.351

Normal 5 REACTOME_NITRIC_OXIDE_STIMULATES_GUANYLATE_CYCLASE 0.000 0.241 0.380

Normal 6 REACTOME_PLATELET_HOMEOSTASIS 0.000 0.206 0.383

Normal 7 KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION 0.000 0.183 0.391

Normal 8 REACTOME_DIGESTION 0.000 0.181 0.412

Normal 9 REACTOME_GLUCAGON_LIKE_PEPTIDE_1_GLP1_REGULATES_INSULIN_SECRETION 0.000 0.163 0.415

Normal 10 REACTOME_DIGESTION_AND_ABSORPTION 0.000 0.148 0.418

Normal 11 REACTOME_GLUCAGON_SIGNALING_IN_METABOLIC_REGULATION 0.000 0.147 0.433

Normal 12 REACTOME_SUMOYLATION_OF_INTRACELLULAR_RECEPTORS 0.000 0.144 0.444

Normal 13 REACTOME_FCGR3A_MEDIATED_IL10_SYNTHESIS 0.004 0.137 0.451

Normal 14 REACTOME_AQUAPORIN_MEDIATED_TRANSPORT 0.000 0.131 0.455

Normal 15 REACTOME_STIMULI_SENSING_CHANNELS 0.000 0.131 0.470

Normal 16 REACTOME_FOXO_MEDIATED_TRANSCRIPTION 0.004 0.140 0.495

Normal 17 REACTOME_RHO_GTPASES_ACTIVATE_PAKS 0.002 0.151 0.533

Normal 18 NABA_ECM_GLYCOPROTEINS 0.006 0.154 0.547

(Continued)
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TABLE 1 | Continued

Up in Position Name nom.p fdr.q fwer.q

Normal 19 REACTOME_BINDING_AND_UPTAKE_OF_LIGANDS_BY_SCAVENGER_RECEPTORS 0.002 0.152 0.558

Normal 20 REACTOME_CREATION_OF_C4_AND_C2_ACTIVATORS 0.006 0.151 0.573

D

Normal 406 PID_WNT_CANONICAL_PATHWAY 0.200 0.401 1.000

Normal 672 PID_WNT_SIGNALING_PATHWAY 0.534 0.619 1.000

Normal 783 REACTOME_BETA_CATENIN_PHOSPHORYLATION_CASCADE 0.777 0.804 1.000

Normal 791 REACTOME_WNT_LIGAND_BIOGENESIS_AND_TRAFFICKING 0.852 0.837 1.000

Normal 792 REACTOME_WNT5A_DEPENDENT_INTERNALIZATION_OF_FZD4 0.829 0.836 1.000

(A) 20 most upregulated pathways in colon adenomas. (B) Canonical Wnt-related pathways upregulated in colon adenomas. (C) 20 most upregulated pathways in normal
colon samples. (D) Canonical Wnt-related pathways upregulated in normal colon samples. Per pathway the rank is given in the list of upregulated pathways (position), the
nominal p-value (nom.p), false-discovery-rate corrected p-value (fdr.q), and the family-wise error corrected p-value (fwer.q).

on specific pathway activations that are distinct from traditional
gene enrichment set analysis.

METHODS: DESIGN OF A NEW HIGHLY
SENSITIVE ASSAY PLATFORM TO
QUANTITATIVELY MEASURE ACTIVITY
OF SIGNAL TRANSDUCTION PATHWAYS
ACROSS CELL AND TISSUE TYPES AND
VALIDATION

Starting from the opportunities provided by the transcriptome,
we have developed an assay (OncoSignal) to quantitatively
measure activity of signal transduction pathways across cell and
tissue types. At the core of the approach is a mathematical
Bayesian model which quantitatively infers activity of signal
transduction pathways from mRNA measurements of a small
number of selected direct target genes of the respective signaling
pathway-associated transcription factor (Verhaegh and van
de Stolpe, 2014; Verhaegh et al., 2014; van Ooijen et al.,
2018; van de Stolpe, 2019; van de Stolpe et al., 2019a).
By selecting for high evidence direct target genes of the
transcription factor, this approach builds on knowledge obtained
on mechanisms of signal transduction and gene transcription
regulation (van Hartskamp et al., 2019).

A Bayesian Model of Target Gene
Activation
We have employed a Bayesian network model that describes the
causal relation between transcription factor activation of a certain
pathway and the mRNA expression levels of the corresponding
direct target genes (Verhaegh et al., 2014), as shown in Figure 1A.
The model contains three types of nodes: (1) a transcription
factor complex (TF), (2) high evidence direct target genes (TG),
and (3) measurement nodes representing the corresponding
probes or probe sets (PS) of each of the target genes. Based on
an elaborate literature study, we selected genes as direct target
genes if they were supported by multiple types of evidence, such
as motif analysis on the transcription factor, its actual binding to
promotor regions (e.g., ChIP-seq experiments), and differential
expression experiments, and supported by ongoing clinical trials.

By choosing direct target genes, we ensure maximum specificity
of the models. Furthermore, this reduces dependency on specific
tissue-dependent contexts, making that the models can be used
across different tissue types.

Given the network structure, we subsequently define
parameters describing (a) the relation between the transcription
factor complex and the direct target genes, and (b) the relation
between each target gene and its corresponding measurements.
The parameters of the first layer (a) are based on literature
insights, whereas those of the second layer (b) are calibrated
based on measurements on samples with a known ground
truth status for activity of the respective signal transduction
pathway, from which typical measurement levels are deduced in
an inactive or an active state. These ground truth samples may
come from patient studies, such as for the Wnt pathway, which is
known to be activated in colon adenomas and inactive in normal
colon samples, or from controlled cell line experiments in
which a default inactive pathway is activated by adding ligands,
or a constitutively activated pathway is blocked by means of
blocking compounds.

Biological Validation
After building and calibrating Bayesian pathway models as
described above, the models can be applied on subsequent
individual test samples by taking such a sample’s measurements
and feeding them into the model after which Bayesian inference
is used to re-engineer the odds that the transcription factor must
have been activated compared to those that are not activated.
These odds are represented on a log2 scale, with a positive value
indicating that there is more evidence for an active pathway, and
a negative value indicating more evidence of an inactive pathway.
For ease of comparison, these log2 values are further normalized
to a 0–100 scale.

We have developed Bayesian network models to assess the
phenotypic activity of the PI3K, MAPK-AP1, JAK-STAT1/2 and
JAK-STAT3, NFκB, ER, AR, Notch, TGFβ, Wnt and HH signaling
pathways using Affymetrix expression microarray data (HG-
U133Plus2.0 arrays), and we tested each of them extensively
on data sets from publicly available sources such as the Gene
Expression Omnibus to show that they give a correct read-out
of activity in samples with known ground truth pathway status
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FIGURE 1 | Bayesian model and validation results. (A) The network structure of the Bayesian pathway model, with causal, probabilistic dependencies. (B–G)
Validation results with pathway activity scores represented on a 0–100 scale; each dot is an individual sample. (B) Normal colon samples (gray) show a low Wnt
pathway activity, while colon adenomas (yellow), adenocarcinomas (orange) and carcinomas (red) show a high Wnt pathway activity; microarray data from
GSE20916. (C) Medulloblastoma samples with a driving CTNNB1 mutation (yellow) show a high Wnt activity, while other medulloblastoma samples (gray) show a
low Wnt activity; microarray data from GSE10327. (D) ER pathway activity in MCF7 cell lines is low if treated with vehicle (gray) or only tamoxifen (yellow), high if
treated with E2 (red), which is reduced again after adding tamoxifen (orange); microarray data from GSE53734. (E) FOXO activity is low in control BT474 cell lines
(gray), indicating a high PI3K activity, but FOXO is high again (and PI3K low) after treatment with lapatinib (yellow); microarray data from GSE16179. (F) Quantitative
differences in FOXO activity in HCC827 cell lines treated with DMSO (gray), erlotinib (yellow), AZD6244 (orange) and BEZ235 (red); microarray data from GSE51212.
(G) Quantitative differences over the course of time (days 1, 2, 3, 7) without (first four groups) and with TGFβ stimulation (last four groups); microarray data from
GSE84500.
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(Verhaegh et al., 2014; Creemers et al., 2018; van de Stolpe et al.,
2018; van Ooijen et al., 2018; Bouwman et al., 2020; Canté-
Barrett et al., 2020; Inda et al., 2020). Some validation data
for Wnt, ER, FOXO, and TGFβ is shown in Figures 1B–G,
illustrating that the tests accurately indicate pathway activity
known from disease etiology (1B) or mutation information (1C),
and represent changes in activity due to treatment (1D and 1E).
Pathway activity is assessed not only in a qualitative manner, but
differences in effect from various treatment compounds or time
series can even be observed quantitatively (1F and 1G).

The signal transduction pathway (STP) assays have been
biologically validated on a variety of cell types and are in
principle applicable to all healthy and diseased cell and tissue
types. The major reason for this broad applicability is the focus
on transcription factor target genes. This maximally eliminates
influences of cell type-specific proteins on the target gene
levels. Another feature of the Bayesian computational network
model is that it can deal well with variability in input data,
including conflicting data such as target genes that are not
expressed in a specific sample despite the transcription factor
being active, or target genes that are expressed despite an
inactive transcription factor. Third, target genes were not selected
based on relevance for a specific disease or tissue type, but
solely as reliable readout for transcription factor activity. When
expression levels of individual pathway target genes vary between
samples and between different cell types, the Bayesian reasoning
principle allows robust interpretation of these mRNA levels. This
explains why the STP assays can deliver reliable pathway activity
measurements across patient samples in spite of the variation
that is inherent to such samples. The same signal transduction
pathways that play a role in cancer, also determine activity
or immunosuppression of the many cell types that together
generate the innate and adaptive immune response, and as a
consequence STP tests are being studied to measure activity of
the immune system (van de Stolpe et al., 2019b).

Pathway Assays for Routine Clinical
Samples
Our STP assays were first built and tested on Affymetrix
expression microarray data, having the advantage of access to
publicly available datasets from the GEO database, enabling
model validation on multiple independent preclinical and clinical
datasets (GEO database, 2021). To facilitate clinical use and
enable assay performance on FFPE tissue samples, assays for
MAPK-AP1, PI3K, ER, AR, Notch, TGFβ, and HH pathways
have recently been adapted to RT-qPCR measurements of mRNA.
Additional advantages of qPCR-based tests are “in house” use
on regular PCR equipment for a short time-to-result (typically
within 3 h) and use on small or low quality FFPE samples.

To build these RT-qPCR pathway assays, we first reduced the
number of target genes used per pathway to around 12. This
still enables robust behavior of the assays, while maintaining
specificity, and all validation results were confirmed with these
reduced gene lists. Next, we used the very same calibration
samples to determine the model parameters with the only
difference that we measured them again with RT-qPCR. In this

way, we ensure compatibility between the microarray-based and
RT-qPCR based STP assays.

Comparing Pathway Scores to
Reference Distributions
When performing an STP analysis on an individual patient
sample to help guide the decision on targeted therapy, it
will be necessary to know whether and to which extent a
specific signaling pathway activity is considered abnormal, and if
increased, whether it is likely to be tumor driving and targetable.
This requires the definition of a normal pathway activity range
including a pathway activity threshold. To obtain this, STP
activity analysis was performed on healthy tissue samples, and the
95th percentile of normal was defined as threshold above which
the signaling pathway activity in tumor tissue is considered to
be abnormal (Martin et al., 2020). When the pathway activity
score on an individual sample is defined as increased, it can
be considered as a potential tumor driving signaling pathway.
To increase the likelihood that the identified pathway is indeed
tumor driving, it is of value to know whether this pathway is more
often activated in the analyzed cancer type. For this purpose, sets
of cancer tissue samples have been compared with the reference
pathway activity range for different cancer types, and frequently
activated signaling pathways were defined as likely tumor driving
pathways for the respective cancer types. To illustrate this, for
the ER and AR pathways, the average pathway activity score
was observed abnormally high in luminal breast cancer and
primary prostate cancer, respectively, indicating a role as tumor
driving pathway in these cancer types (Verhaegh et al., 2014;
van de Stolpe et al., 2019a; Inda et al., 2020). If an abnormal
ER pathway activity is measured in an ER positive breast cancer
sample, this can be considered as a tumor driving pathway and
can be designated as a therapy target, and it may be inferred
that a patient can be a good candidate for hormonal therapy
(see Figure 2B, left). If despite an ER positive IHC result, the
ER pathway appears to be not abnormally active, the patient
may have another tumor driving pathway active, for example the
PI3K pathway (Figure 2B, right) which may be of importance for
therapy choice. Once the normal reference values are known for
a specific tissue type, for each patient sample a patient report can
be produced containing information for all analyzed signaling
pathways (Figure 2A) and evaluated as potential targets.

RESULTS: APPLICATION OF FINDINGS

The Advantage of Adding RNA-Based
Information on Signaling Pathway
Activity to DNA-Based Genomic
Mutation Analysis
Our findings have shown that STP analysis of a cancer tissue
sample may assist in functionally characterizing a gene mutation;
for example, an unknown mutation in a gene encoding a
signaling protein is more likely to be a functional mutation if
the corresponding pathway was found active (Figure 3). We
show that Wnt pathway activity scores were measured in tissue
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FIGURE 2 | Patient report for signaling pathway analysis with OncoSignal pathway activity tests. Visualized are for each signaling pathway the pathway activity
distribution in healthy reference tissue (blue line) and in primary cancers originating from this tissue (prostate and breast) (red line); the dotted vertical line indicates the
95% confidence interval of normal pathway activity; the vertical blue line indicates the measured pathway activity in the analyzed patient tissue sample. If the blue line
is located outside the (right) 95th percentile of normal, pathway activity is considered potentially tumor driving and targetable. (A) Examples of two individual patient
samples from the EIT-PACMAN study (Martin et al., 2020), in which samples were analyzed from hard-to-treat patients from the MOSCATO study (Massard et al.,
2017). For each patient pathway activity scores are shown for the ER, AR, PI3K, Hedgehog, MAPK-AP1, Notch, TGFβ pathways. Left: prostate cancer patient; right:
breast cancer patient. For the prostate cancer patient (vertical line) the AR pathway activity score exceeded the 95th percentile of normal, while for prostate cancer in
general AR pathway activity also exceeds the normal threshold (red line); consequently, the AR pathway was defined as a potentially targetable tumor driving
pathway for this patient. Similarly, the ER pathway was abnormally active in the advanced breast cancer patient, providing a treatment target. (B) Example of two
individual patient samples from Inda et al. (2020). For two patients with an ER positive breast cancer, ER (top) and PI3K (bottom) pathway activity scores are shown
before (brown vertical line) and after (green vertical line) neoadjuvant hormonal aromatase inhibitor therapy. The left patient is a responder to hormonal therapy, and
the increased ER pathway activity before therapy returned to normal during therapy. The right patient is a non-responder to hormonal therapy, and instead of the ER
pathway, the PI3K pathway is the most likely tumor driving pathway. Below, the actual measured pathway activity scores are depicted.

samples from human ovarian and breast cancer PDX (xenograft)
mice. Loss of APC and gain of β-catenin (CTNNB1 gene) protein
function are known to result in increased Wnt pathway activity.
Wnt pathway activity scores were normal in the reference (WT),

increased in loss-of-function APC-mutated ovary cancer and in
gain-of-function CTNNB1 Asp32Tyr mutated breast cancer, and
normal in non-functionally mutated CTNNB1 Asp665Glu breast
cancer (Figure 3).
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FIGURE 3 | Functional characterization of Wnt pathway mutations in PDX mice. Wnt pathway activity scores were measured in tissue samples from human ovarian
and breast cancer PDX (xenograft) mice. Loss of APC and gain of β-catenin (CTNNB1 gene) protein function are known to result in increased Wnt pathway activity.
Wnt pathway activity scores were normal in the reference (WT), increased in loss-of-function APC-mutated ovary cancer and in gain-of-function CTNNB1 Asp32Tyr
mutated breast cancer, and normal in non-functionally mutated CTNNB1 Asp665Glu breast cancer. Pathway tests were adapted for use in mouse PDX models (to
exclude interference of mouse model microenvironment). Pathway Activity Scores presented on a 0–100 scale. Tissue samples were analyzed in a collaboration with
Charles River Labs (CRL) (Verhaegh et al., 2018).

STP activity analysis is also expected to facilitate the search
for tumor driving mutations in a tumor, which can be focused
on genes known to be related to the activated signaling pathway.
Performing DNA and RNA sequencing simultaneously on the
same sample is expected to provide highly complementary
information. RNA sequencing data provide information on
mutated genes that are actually expressed and likely to be
functionally relevant and can be used to better link genomic
mutations to abnormal STP activity. To apply this in the
PACMAN study (PACMAN, 2021), STP activity analysis is
performed retrospectively on samples across histologies of cancer
which had been treated with targeted drugs guided by mutation
analysis, resulting in targeted drug treatment for 19% of patients
and a 7% increase in treatment response (Massard et al., 2017).
Interim study results showed that addition of information on
signaling pathway activity increased the percentage of breast and
prostate cancers for which a targeted drug could be identified to
nearly all cases (Martin et al., 2020).

The Advantage of Assaying Low Input
Analytes, Including Circulating Tumor
Cells
Some clinical sample types are unavoidably associated with a
minimal cancer cell content or low quality. Performing STP
analysis on such samples in a standard manner tends to be
associated with high technical noise (Inda et al., 2020). Obtaining
tumor biopsies from difficult to access cancer types, such as lung
cancer, or measuring pathway activity in circulating tumor cells
(CTCs) may be clinically very relevant to obtain information on

signaling pathway activity in the sample to decide on a targeted
therapy choice. Furthermore, the pathways involved in epithelial
to mesenchymal transition important for cell and CTC migration
are reflected in our assay. Measuring targets in CTCs has high
potential as a liquid biopsy of otherwise unattainable metastatic
tumors and analyzed as single cells (van de Stolpe et al., 2011; van
de Stolpe and den Toonder, 2014; Massagué and Obenauf, 2016).

STP analysis of very small samples may be possible using
either RNA sequencing or qPCR to measure the required
mRNA levels. RNA sequencing on single cells has recently
developed into a feasible technology (Hedlund and Deng, 2018;
Hwang et al., 2018; Chen et al., 2019). Using the STP analysis
technology, measurement of activity of the Wnt pathway on a
single (circulating tumor) cell using RNA sequencing data has
already been reported, underscoring the highly sensitive nature
of the pathway analysis approach (van Strijp et al., 2017). Initial
results using the qPCR-based STP analysis similarly indicated
the feasibility of measuring pathway activity on only a few cells,
using an adaptation of the protocol to include a pre-amplification
method (Figure 4). Incorporating the RNA pre-amplification
step is expected to enable performance of multiple STP analyses
on a single CTC.

Application of the mRNA-Based Assay
Platform to Measure Activity of Signaling
Pathways
Initial results have been published on a number of different
cancer types using the above described assay platform, in which
the potential of STP analysis was explored to provide insight in
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FIGURE 4 | Measurement of activity of multiple signaling pathways simultaneously in a single small tissue sample, using RNA pre-amplification by multiplex PCR (96
primer sets) (Philips MPDx/OncoSignal, Eindhoven, Netherlands). Measurement of activity of the MAPK-AP1 (AP1), AR, ER, PI3K-FOXO (PI3K pathway activity is the
inverse of measured FOXO activity) pathways in two independent formalin fixed paraffin embedded (FFPE) samples, activity score 0–100 on the y-axis. Left: direct
high = pathway activity measurement without pre-amplification in a sufficiently large sample (n = 8), 1 ng per reaction, average mRNA qPCR Cq of 30. Middle:
preamp = measurement in a very low RNA sample after pre-amplification, measured on sample (n = 6) diluted to average Cq of reference genes between 32 and
35.5. Right: direct low = measurement (n = 6) on a similar diluted sample without pre-amplification.

cancer pathophysiology and to predict prognosis and response to
therapy (Verhaegh et al., 2014; van Boxtel et al., 2019; Inda et al.,
2020; Sieuwerts et al., 2020; van Weelden et al., 2020). A few key
results are summarized below, centered around the role of the
different signaling pathways in the various cancer types.

The estrogen receptor (ER) pathway is a tumor driving
signaling pathway in breast cancer, and can also be active in
ovarian and endometrium cancer although its role in those
malignancies is less clear. Adjuvant tamoxifen treatment of ER
positive breast cancer patients was associated with significantly
lower recurrence rate in patients with an ER pathway active
primary tumor, compared to patients with an ER-inactive tumor
(Verhaegh et al., 2014). Pathway analysis in three independent
clinical studies (performed using both Affymetrix microarray-
and qPCR-based pathway analysis) showed that in primary ER
positive breast cancer patients, the ER pathway activity score
predicted response to neoadjuvant treatment with an aromatase
inhibitor (Inda et al., 2020). In ER positive breast cancer patients
who developed metastatic disease and were subsequently treated
with first line tamoxifen, an active ER pathway was associated
with a better prognosis (Sieuwerts et al., 2020). In both ovarian
cancer and endometrial cancer, loss of ER pathway activity was
associated with higher grade cancer type and worse prognosis
(van Lieshout et al., 2020; van Weelden et al., 2020). Results
suggest that for all three cancer types, ER pathway activity
reflects a more differentiated cancer type associated with a
better prognosis, and measuring ER pathway activity may predict
response to hormonal therapy in ER positive breast cancer.

The AR pathway is another important hormonal pathway and
positive IHC staining has been described for different cancer
types (Munoz et al., 2015). While, as expected, the AR pathway

was universally measured as active in primary prostate cancer,
AR pathway activity remained high in some castrate-resistant
metastatic prostate cancers, possibly reflecting emergence of AR
activating mutations (van de Stolpe et al., 2019a). In breast
cancer patients, the highest average AR pathway activity score
was found in the HER2 subtype (van de Stolpe et al., 2020). The
ratio between AR and ER IHC staining has been suggested to
be informative as to the functional role of the AR pathway in
breast cancer (Rangel et al., 2018, 2020). STP analysis enabled
calculation of an AR over ER pathway activity ratio instead of the
AR over ER protein expression ratio, revealing a relatively low
ratio in luminal A/B and a high ratio in higher grade HER2 and
basal breast cancer subtypes. This is in line with reported AR/ER
expression ratios per subtype, and suggestive of a potential benefit
of anti-androgen therapy for breast cancer with a high AR/ER
pathway activity ratio (van de Stolpe et al., 2020). In luminal
breast cancer patients who had all developed metastatic disease
and therefore constituted a bad prognosis patient subset, high AR
pathway activity was associated with worse outcome (Sieuwerts
et al., 2020). In advanced salivary duct cancer with positive AR
IHC staining, the AR pathway activity score predicted response to
androgen deprivation therapy (van Boxtel et al., 2019). Currently,
a second independent clinical study is in progress aiming at
confirmation of the predictive value of AR pathway activity for
response to anti-androgen therapy.

The PI3K pathway is a major growth factor pathway,
sometimes called a “survival” pathway, and the frequent pathway
activity can be caused by for example mutations in the PIK3CA
gene or amplification of the HER2 gene (van de Stolpe, 2019). In
line with this, PI3K pathway activity was found to be associated
with higher grade and worse prognosis in breast cancer, high
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grade serous ovarian cancer, prostate cancer, and esophageal
cancer (Verhaegh et al., 2014; Creemers et al., 2018; van de Stolpe
et al., 2019a; Sieuwerts et al., 2020; van Lieshout et al., 2020).
Novel PI3K inhibitors including B591 and IBL-302 are in various
stages of development.

Activity of developmental signaling pathways, such as the
TGFβ, Hedgehog, Notch and Wnt pathways, is a typical
characteristic of stem cells and was found in a variety of tumors
including medulloblastomas and gliomas (Verhaegh et al., 2014;
Holtzer et al., 2017; van de Stolpe et al., 2019a). Some of these
pathways, such as the TGFβ pathway, may play either a tumor
suppressive or tumor promoting role in cancer, depending on
cellular context (Alinger et al., 2009; Katoh and Katoh, 2009;
Massagué, 2012; Sundqvist et al., 2013; Liu et al., 2015; Aster
et al., 2017). In breast cancer and colon cancer, high TGFβ

pathway activity was associated with worse prognosis (Wesseling-
Rozendaal et al., 2019a). In contrast, activity of the TGFβ

pathway was frequently lost in advanced prostate cancer and in
esophageal cancer, suggestive of a tumor suppressive role in the
corresponding healthy tissue (Creemers et al., 2018; van de Stolpe
et al., 2019a). Various anti-TGFβ small molecule inhibitors or
antibodies are in various stages of development and include the
compounds SAR439459 and galunisertib.

The Wnt pathway is well known for its tumor initiating
role in colon adenoma and cancer, and Wnt pathway activity
was confirmed in these tumors (Bienz and Clevers, 2000;
Verhaegh et al., 2014). The role of Wnt pathway activity in
some other cancers may be more complex (Kypta and Waxman,
2012; Schneider and Logan, 2018). In primary lower grade
prostate cancer, Wnt pathway activity was associated with the
TMPRSS2:ERG fusion protein, known to be able to activate the
Wnt pathway, but in advanced disease Wnt pathway activity
was frequently lost, suggesting a tumor-suppressive rather than
tumor-promoting role under this condition (Wu et al., 2013).
In primary breast cancer and in ovarian cancer, Wnt pathway
activity seemed to be associated with less aggressive tumors
(Sieuwerts et al., 2020; van Lieshout et al., 2020).

Notch pathway activity was associated with improved
prognosis in T cell-acute lymphoblastic lymphoma (Canté-
Barrett et al., 2020). Activity of the Hedgehog pathway was
found in primary metastasized breast cancer and was associated
with worse prognosis in luminal breast cancer patients who
developed metastatic disease, and pathway activity was increased
in higher compared to lower grade ovarian cancer (Beachy
et al., 2018; Sieuwerts et al., 2020; van Lieshout et al.,
2020). Signaling pathways frequently crosstalk to orchestrate
specific cellular functions (Cantley et al., 2014). Simultaneous
measurement of multiple signaling pathway activities on the same
sample enabled exploration of cooperation between signaling
pathways (Sieuwerts et al., 2020). Interaction between the
SMAD2/3 transcription factor of the TGFβ pathway and the
FOXO transcription factor (inversely related to PI3K pathway
activity) has been described in detail, and can serve a tumor
suppressive role (Massagué, 2012; Sundqvist et al., 2013).
Activation of the PI3K pathway, reflected by loss of FOXO
activity, is frequently associated with loss of TGFβ pathway
activity (van Ooijen et al., 2018). In esophageal cancer treated

with neoadjuvant chemoradiation, combined FOXO plus TGFβ

pathway activity was associated with favorable outcome, while
loss of FOXO and TGFβ pathway activity was associated with
increased recurrence rate (Creemers et al., 2018). Cooperative
activity of tumor driving signaling pathways may also be
associated with resistance to a drug that targets a single pathway.
This is explored in the PACMAN study, in which pathway
analysis is performed on a variety of cancer types that were
treated with targeted drugs (Martin et al., 2020). Multiple
clinical studies are in progress to further explore the relation
between single or combined signaling pathway activity and
cancer progression, and to investigate clinical value of measuring
signaling pathway activity to predict response and resistance to
targeted treatment.

DISCUSSION: FUTURE APPLICATIONS
WITH THERAPY SELECTION

Characterization of the Immune
Microenvironment and Blood Samples
For many diseases, including cancer, the immune response
is a major determinant of progression, response to therapy,
and clinical outcome. Immunotherapy has emerged as a
high potential curative treatment for many cancer types, and
checkpoint inhibitor therapy is becoming standard of care for
cancer types for a variety of tumors including melanoma, lung
cancer, head and neck cancers (Havel et al., 2019). Various types
of immunotherapy are available and being developed, mainly
directed at breaking the immunotolerance against cancer or at
inducing novel anti-cancer immunity by various vaccination
approaches, and either as a monotherapy or in combination
with radiotherapy, chemotherapy or targeted therapy (Emens
and Middleton, 2015; Romero et al., 2016; Van Limbergen
et al., 2017). While initially late-stage cancer has been the focus
of immunotherapy, adjuvant use in an earlier clinical phase,
and even in a neoadjuvant setting to exploit the tumor as a
source of neo-antigen, is being explored (Moujaess et al., 2019).
Aside from sporadic successes, such as microsatellite instability
or mismatch repair-deficiency biomarkers to reliable predict
checkpoint inhibitor response, challenges in predicting response
to immunotherapy remain and currently used parameters
such as tumor type, its neoantigen profile, histopathology
of the tumor infiltrate (TIL) (e.g., inflammatory or immune
excluded), and CD3+/CD8+ and PD1 and PD-L1 IHC do not
perform sufficiently well (Chang et al., 2018; Hegde and Chen,
2020; Kennedy and Salama, 2020). As a consequence there
is a high need for tests to improve response prediction and
assessment, and also to predict who is at high risk for immune-
mediated severe side effects (Duffy and Crown, 2019). Failure to
successfully select responder patients for immunotherapy may
ultimately endanger further clinical implementation of this high
potential therapy.

The immune response is determined by coordinated activity
of many immune cell types belonging to the innate and
adaptive immune system. The functional state of immune
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cells is determined by coordinated activity of the same signal
transduction pathways that have been described above as
potential tumor driving signaling pathways (Newton and Dixit,
2012; Cantrell, 2015). Immune cells communicate through a
variety of free (e.g., cytokines) or membrane-bound molecules
that bind to specific cellular receptors to activate the signaling
pathways that determine their function in mounting an immune
response, such as T cell clonal expansion, cytotoxic functions and
antigen presentation (Platanias, 2005; Li et al., 2007; Goodman
et al., 2011; Lee et al., 2011; Han et al., 2012; Oh and Ghosh, 2013).
Combined JAK-STAT1/2 and JAK-STAT3 pathway analysis in
blood samples of patients with a variety of viral infections was
shown to quantitatively measure the cellular immune response
to viruses (Bouwman et al., 2020). With respect to cancer,
measurement of STP activity in a tumor infiltrate (TIL), or
possibly in blood samples, may be similarly informative on the
immune-active versus immune-tolerant state of the immune
response. Initial results suggest that in primary breast cancer the
adaptive T cell response has already been switched off, while
in vitro study results suggest that this may be mediated by
soluble factors from cancer tissue (e.g., TGFβ) that reduce effector
immune pathway activity (PI3K, JAK-STAT, NFκB pathways) and
increase activity of the immune suppressive TGFβ pathway (Gu-
Trantien et al., 2013; van de Stolpe et al., 2019b). Investigation
of the value of STP analysis to predict response to checkpoint
inhibitor immunotherapy is underway. New technologies are
becoming available to separately analyze different cell types in
cancer tissue, including immune cell subsets in the TIL (e.g.,
multiplex IHC, laser microdissection of selected regions for STP
analysis). This may facilitate STP activity profiling in specific
immune cell types in the TIL to investigate the relation with
immunotherapy response (Gu-Trantien et al., 2018; Garaud et al.,
2019; Solinas et al., 2019).

Choosing a Targeted Drug for an
Individual Patient Based on Identification
of a Targetable Signal Transduction
Pathway
Choosing a targeted drug with the highest chance at clinical
response requires characterization and consideration of a number
of important factors. Since targeted drugs are specifically directed
toward a component of a signaling pathway, a functionally active
signaling pathway can be a prerequisite for response (Verhaegh
et al., 2014; van Boxtel et al., 2019; Wesseling-Rozendaal et al.,
2019b; Inda et al., 2020). In the presence of a pathway activating
mutation in the gene for a signaling protein, the drug needs
to target downstream of the activated protein in the signaling
pathway to be effective. This is illustrated in Figure 5 in which
anti-EGFR inhibitors (cetuximab, gefitinib, and afatinib) had
been used to treat breast cancer cells containing mutations in
genes coding for proteins that play a direct or indirect role
(through crosstalk between pathways) in the PI3K pathway. All
TKIs inhibited PI3K pathway activity in wild type cells and cells
with overexpressed Epidermal Growth Factor Receptor (EGFR).
Inhibition was maximal with the dual EGFR/HER2 inhibitor
afatinib. Of the two EGFR TKI inhibitors, gefitinib was most
effective, possibly because it targets EGFR intracellularly (Bardelli

FIGURE 5 | Analysis on data from GSE80667, described in Fertig et al.
(2016). HaCaT premalignant keratinocyte cell line (mock), with overexpressed
wild-type EGFR (EGFR),or activating mutation in HRAS (HRASV12D) (HRAS) or
PIK3CA (PIK3CAH1047R) (PIK3CA) genes; treated for 24 h with cetuximab,
gefitinib, or afatinib. Measured FOXO activity score per analyzed sample,
presented on a log2odds scale; PI3K pathway activity is the inverse of the
FOXO activity score.

and Jänne, 2012). Only minor inhibitory effects were observed
in HRAS- and PIK3CA-mutant cells because these mutations
are located downstream of the TKI drug targets and therefore
confer resistance.

A third factor to take into account in deciding on a targeted
drug treatment is whether more than one tumor driving signaling
pathway is active, potentially conferring drug resistance. This
was a frequently encountered issue in the analyzed cancer types
to date (Martin et al., 2020). Activity of the PI3K growth
factor pathway in ER positive breast cancer was associated with
primary resistance to endocrine therapy (Ciruelos Gil, 2014).
Targeting of both pathways simultaneously may be tested to
overcome resistance and improve clinical response. Inhibition
of one signaling pathway may lead to activation of a resistance-
conferring pathway. An in vitro example for the latter was
identified in fulvestrant resistant breast cancer cell lines that
unexpectedly had gained MAPK pathway activity in addition to
loss of ER pathway activity (Wesseling-Rozendaal et al., 2019b).

Dealing With Intra-Tumor Heterogeneity
Similar to heterogeneity with respect to mutations within a
tumor, functional pathway activity levels may vary within a
tumor. The amount of variation to expect probably depends
on cancer type as well as the signaling pathway. In a clinical
study on intra-tumor heterogeneity in breast cancer, ER pathway
activity was the least variable and PI3K pathway activity the most
variable within a tumor (van de Stolpe et al., 2018). Results of this
study suggested that measuring pathway activity at two locations
in a single primary breast cancer biopsy generally provided
sufficient information on overall intra-tumor heterogeneity
(van de Stolpe et al., 2018). Upon further confirmation, a
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repeat STP analysis on multiple parts of a biopsy may further
underpin the choice for a targeted therapy. STP analysis is
expected to also provide a novel tool, complementary to genome
sequencing and methylation analysis, to investigate mechanisms
of tumor evolution (Sottoriva et al., 2015; Sun et al., 2018;
Roerink et al., 2018).

CONCLUSION

Using the described STP analysis tests, activity of twelve
relevant signaling pathways (PI3K, MAPK, JAK-STAT1/2,
JAK-STAT3, NFκB, ER, AR, PR, Notch, TGFβ, Wnt and
HH) can be measured simultaneously and quantitatively on
individual patient cancer tissue samples from different cancer
types. As illustrated above, this pathway analysis approach
reveals commonalities with respect to pathway activities across
different cancer types, potentially enabling an alternative cancer
classification system based on signaling pathway activity profiles,
complementary to the conventional classification based on the
organ location. Developing a molecular fingerprint of tumors
with respect to signaling pathway activities is expected to
provide new insights into the pathophysiology of the many
cancer types, including discovery of novel mechanisms for
tumorigenesis and metastasis. STP analysis may also contribute
to identification of novel drug targets and development of
therapies that are more generalizable across cancer types
including rare cancers.

Clinical diagnostic applications of STP analysis for prediction
of prognosis and response to therapy, including identification
of resistance pathways, are currently being further developed
in clinical studies. Prospective clinical validation studies in
various cancer types and basket studies are being initiated
with clinical partners, predominantly making use of RT-
qPCR-based STP analysis on FFPE tissue samples with
considerations toward low quantity specimens including
circulating tumor cells.

In the future, an important focus will lie on measuring the host
immune response to cancer, both in blood as well as in cancer
tissue samples. Taken together, measurement of STP activity in
cancer, complementary to DNA mutation analysis, is expected
to enable development of novel therapies, improve prediction of
therapy response and resistance, and improve clinical outcome
for a variety of tumor types and treatments, including targeted
drugs and immunotherapy.
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