43 research outputs found

    Genetic diversity fuels gene discovery for tobacco and alcohol use

    Get PDF
    Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury(1-4). These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries(5). Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.Peer reviewe

    Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease

    Get PDF
    Background--Plasminogen activator inhibitor type 1 (PAI-1) plays an essential role in the fibrinolysis system and thrombosis. Population studies have reported that blood PAI-1 levels are associated with increased risk of coronary heart disease (CHD). However, it is unclear whether the association reflects a causal influence of PAI-1 on CHD risk. Methods and Results--To evaluate the association between PAI-1 and CHD, we applied a 3-step strategy. First, we investigated the observational association between PAI-1 and CHD incidence using a systematic review based on a literature search for PAI-1 and CHD studies. Second, we explored the causal association between PAI-1 and CHD using a Mendelian randomization approach using summary statistics from large genome-wide association studies. Finally, we explored the causal effect of PAI-1 on cardiovascular risk factors including metabolic and subclinical atherosclerosis measures. In the systematic meta-analysis, the highest quantile of blood PAI-1 level was associated with higher CHD risk comparing with the lowest quantile (odds ratio=2.17; 95% CI: 1.53, 3.07) in an age- and sex-adjusted model. The effect size was reduced in studies using a multivariable-adjusted model (odds ratio=1.46; 95% CI: 1.13, 1.88). The Mendelian randomization analyses suggested a causal effect of increased PAI-1 level on CHD risk (odds ratio=1.22 per unit increase of log-transformed PAI-1; 95% CI: 1.01, 1.47). In addition, we also detected a causal effect of PAI-1 on elevating blood glucose and high-density lipoprotein cholesterol. Conclusions--Our study indicates a causal effect of elevated PAI-1 level on CHD risk, which may be mediated by glucose dysfunction

    Multi-campaign ship and aircraft observations of marine cloud condensation nuclei and droplet concentrations

    Get PDF
    In-situ marine cloud droplet number concentrations (CDNCs), cloud condensation nuclei (CCN), and CCN proxies, based on particle sizes and optical properties, are accumulated from seven field campaigns: ACTIVATE; NAAMES; CAMP2EX; ORACLES; SOCRATES; MARCUS; and CAPRICORN2. Each campaign involves aircraft measurements, ship-based measurements, or both. Measurements collected over the North and Central Atlantic, Indo-Pacific, and Southern Oceans, represent a range of clean to polluted conditions in various climate regimes. With the extensive range of environmental conditions sampled, this data collection is ideal for testing satellite remote detection methods of CDNC and CCN in marine environments. Remote measurement methods are vital to expanding the available data in these difficult-to-reach regions of the Earth and improving our understanding of aerosol-cloud interactions. The data collection includes particle composition and continental tracers to identify potential contributing CCN sources. Several of these campaigns include High Spectral Resolution Lidar (HSRL) and polarimetric imaging measurements and retrievals that will be the basis for the next generation of space-based remote sensors and, thus, can be utilized as satellite surrogates

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Anthrax Protective Antigen Cleavage and Clearance from the Blood of Mice and Rats▿

    No full text
    Bacillus anthracis protective antigen (PA) is an 83-kDa (PA83) protein that is cleaved to the 63-kDa protein (PA63) as an essential step in binding and internalizing lethal factor (LF). To assess in vivo receptor saturating PA concentrations, we injected mice with PA variants and measured the PA remaining in the blood at various times using PA83- and PA63-specific enzyme-linked immunosorbent assays. We found that both wild-type PA (WT-PA) and a receptor-binding-defective mutant (Ub-PA) were cleaved to PA63 independent of their ability to bind cells. This suggested a PA-acting protease activity in the blood. The protease cleaved PA at the furin cleavage sequence because furin site-modified PA mutants were not cleaved. Cleavage measured in vitro was leupeptin sensitive and dependent on calcium. Cell surface cleavage was important for toxin clearance, however, as Ub-PA and uncleavable PA mutants were cleared at slower rates than WT-PA. The cell binding-independent cleavage of PA was also verified by using Ub-PA (which is still cleaved) to rescue mice from toxin challenge by competitively binding circulating LF. This mutant was able to rescue mice even when given 12 h before toxin challenge. Its therapeutic ability was comparable to that of dominant-negative PA, which binds cells but does not allow LF translocation, and to the protection afforded through receptor clearance by WT-PA and uncleavable receptor binding-competent mutants. The PA cleavage and clearance observed in mice did not appear to have a role in the differential mouse susceptibility as it occurred similarly in lethal toxin (LT)-resistant DBA/2J and LT-sensitive BALB/cJ mice. Interestingly, PA63 was not found in LT-resistant or -sensitive rats and PA83 clearance was slower in rats than in mice. Finally, to determine the minimum amount of PA required in circulation for LT toxicity in mice, we administered time-separated injections of PA and LF and showed that lethality of LF for mice after PA was no longer measurable in circulation, suggesting active PA sequestration at tissue surfaces

    Anthrax Lethal Toxin Induces Ketotifen-Sensitive Intradermal Vascular Leakage in Certain Inbred Mice

    No full text
    Bacillus anthracis lethal toxin (LT) is a bipartite toxin composed of protective antigen (PA) and lethal factor (LF). Injection of LT produces clinical signs characteristic of anthrax infection, including pleural edema and vascular collapse in various animal models. We utilized the classic Miles leakage assay to quantify vascular leakage in mice. LT injected intradermally induced leakage as early as 15 to 25 min in some inbred mouse strains, but not in others, whereas PA or LF individually did not induce leakage. A third component of anthrax toxin, edema factor, did not induce leakage alone or with PA. Leakage was quantified in eight mouse strains, and no correlation was found between sensitivity to intradermal leakage and sensitivity to the lethality of systemically administered LT. The leakage could be inhibited by ketotifen, an inhibitor of mast cell degranulation, but not by azelastine, a histamine receptor 1 antagonist, or by ketanserin, a serotonin 5-HT2A receptor antagonist. LT was cytotoxic to MC/9 mast cells (in vitro) by 7 h after toxin treatment but did not induce histamine release from these cells. Mast cell-deficient mice exhibited the leakage event and had no increased resistance to systemic LT. Human umbilical vein endothelial cells were resistant to LT over 12 h, with only 20% of cells succumbing by 24 h, suggesting that endothelial cell killing is not the cause of the rapid LT-mediated leakage event. We describe here a ketotifen-sensitive vascular leakage event induced by LT which is the most rapid in vivo or in vitro LT-mediated effect reported to date

    Oxidized ATP Protection against Anthrax Lethal Toxin

    No full text
    Bacillus anthracis lethal toxin (LT) induces rapid lysis (<90 min) of murine macrophages from certain inbred strains. The mechanism for LT-induced cytolysis is currently unknown. We hypothesized that the ATP-activated macrophage P2X7 receptors implicated in nucleotide-mediated macrophage lysis could play a role in LT-mediated cytolysis and discovered that a potent P2X7 antagonist, oxidized ATP (o-ATP), protects macrophages against LT. Other P2X7 receptor antagonists, however, had no effect on LT function, while oxidized nucleotides, o-ADP, o-GTP, and o-ITP, which did not act as receptor ligands, provided protection. Cleavage of the LT substrates, the mitogen-activated protein kinases, was inhibited by o-ATP in RAW274.6 macrophages and CHO cells. We investigated the various steps in the intoxication pathway and found that binding of the protective-antigen (PA) component of LT to cells and the enzymatic proteolytic ability of the lethal factor (LF) component of LT were unaffected by o-ATP. Instead, the drug inhibited formation of the sodium dodecyl sulfate-resistant PA oligomer, which occurs in acidified endosomes, but did not prevent cell surface PA oligomerization, as evidenced by binding and translocation of LF to a protease-resistant intracellular location. We found that o-ATP also protected cells from anthrax edema toxin and diphtheria toxin, which also require an acidic environment for escape from endosomes. Confocal microscopy using pH-sensitive fluorescent dyes showed that o-ATP increased endosomal pH. Finally, BALB/cJ mice injected with o-ATP and LT were completely protected against lethality
    corecore